STAPL
Standard Template Adaptive Parallel Library

PARASOL Research Laboratory
Department of Computer Science
Texas A&M University
STAPL Overview

- Superset of ANSI C++ STL
- Supports SPMD parallelism
- Shared and Distributed Memory Model Support
- Portable Means of Automatic Parallelism
pRange

- pRange is an abstract view of a scoped data space that partitions it into disjoint data spaces.
- Essentially, provides a set of working iterators to each thread of a pAlgorithm.
- Structure is a DAG of DAGS
Scheduler & Executor

- Scheduler
 - Accepts pRange
 - Partitions pRange if necessary
 - Generates execution order of pRange subspaces

- Executor
 - Accepts pRange, schedule, and work function
 - Distributes pRange subspaces and work function to processors.
Automatic Conversion

- C++ preprocessor converts STL *algorithms* into STAPL *pi_algorithms*
- Iterators used to construct pRanges
- User must ensure custom objects are safe

```cpp
#define START_STAPL
    sort(x.begin(), x.end());
    for_each(x.begin(),
              x.end(), foo());
#define STOP_STAPL

pi_sort(x.begin(), x.end());
pi_for_each(x.begin(),
            x.end(), foo());
```
STAPL Summary

- Standard Template Adaptive Parallel Library
- Automatic parallelization for a variety of programming paradigms and architectures
- User defined pAlgorithms, pRanges, and Schedulers for improved performance