Parallel S_N Methods

Peter N. Brown
Center for Applied Scientific Computing

May 2001
3-D time-dependent Boltzmann transport equation

\[\frac{1}{v(E)} \frac{\partial \psi}{\partial t} + \Omega \cdot \nabla \psi + \sigma(r, E) \psi = \]

\[\int_{0}^{\infty} \int_{S^2} \sigma_s(r, \Omega' \cdot \Omega, E' \rightarrow E) \psi(r, \Omega', E', t) \, d\Omega' \, dE' + q \]

where

\[\psi(r, \Omega, E, t) = \text{particle flux or intensity} \]
\[r = (x, y, z) \]
\[E, E' = \text{energies} \]
\[\Omega, \Omega' = \text{directions} \]
\[q(r, \Omega, E, t) = \text{source} \]
\[v(E) = \text{particle speed} \]
\[\sigma = \text{total cross section} \]
\[\sigma_s = \text{scattering cross section} \]
Multi-group energy discretization

\[
\frac{1}{v_g} \frac{\partial \psi_g}{\partial t} + \Omega \cdot \nabla \psi_g + \sigma_g(r) \psi_g =
\]

\[
\sum_{g'=1}^{G} \int_{S^2} \sigma_{s,g,g'}(r,\Omega' \cdot \Omega) \psi_{g'}(r,\Omega') d\Omega' + q_g, \quad g = 1, \ldots, G
\]

where \(0 \leq E_G < \cdots < E_g < E_{g-1} < \cdots < E_0\)

\(\psi_g(r, \Omega, t)\) = group \(g\) particle flux or intensity
\(r = (x, y, z)\)
\(\Omega, \Omega'\) = directions
\(q_g(r, \Omega, t)\) = group \(g\) source
\(v_g\) = group \(g\) particle speed
\(\sigma_g\) = group \(g\) total cross section
\(\sigma_{s,g,g'}\) = group \(g'\) to \(g\) scattering cross section
Transport solver combines traditional & multilevel methods

- Based on Petrov-Galerkin finite element in space, multigroup in energy, S_N or finite element in direction

- Differential/algebraic system: $f(t, \Psi, \dot{\Psi}) = 0$
 - implicit time integration via IDA
 - GMRES linear solver: $T \Psi = F$

- The matrix structure for T is $T = H - S$ where

 $$H = \begin{bmatrix} H_1 & \cdots & \cdots \\ \vdots & \ddots & \vdots \\ H_G & \vdots & \ddots \end{bmatrix} , \quad S = \begin{bmatrix} S_{11} & \cdots & S_{1G} \\ \vdots & \ddots & \vdots \\ S_{G1} & \cdots & S_{GG} \end{bmatrix}$$

 and

 $$H_g = \text{diag}(H_{g1}, \cdots, H_{gL})$$
Matrix formulation

- The components in the matrix $T = H - S$ have the form

$$H_{gd} = \begin{bmatrix} \Omega_d \cdot C + (\Sigma_g + (v_g \Delta t)^{-1} I)M \\ B_d \end{bmatrix}$$

and

$$S_{gg'} = \begin{bmatrix} \sum_{n=0}^{N} L_n^+ \Sigma_{s,n,gg'} L_n M \\ 0 \cdot B_d \end{bmatrix}$$

- $M =$ mass matrix, $C =$ discrete gradient, $B_d =$ boundary operator, and $\Sigma_g, \Sigma_{s,n,gg'} =$ cross section matrices
- $\Phi_n \equiv L_n \Psi =$ all n^{th} spherical harmonic moments of Ψ
- $\Psi \equiv L_n^+ \Phi_n =$ flux vector from n^{th} order moments in Φ_n
PVODE software suite

User
Problem-Defining
Code

PVODE
ODE
Integrator
\dot{u} = f(t,u)

IDA
DAE
Integrator
f(t,u,\dot{u}) = 0

KINSOL
Nonlinear
Eqn. Solver
f(u) = 0

Band
Solver
Preconditioned
GMRES
Solver
General
Preconditioner
Modules
Vector
Kernels
Parallel $T\Psi$ evaluation

- Parallelism achieved via: spatial domain & energy group decomposition, OpenMP threads (directions and vectors)
- Use MPI for spatial and energy group decomposition
- IBM ASCI White architecture
 - 512 SMP nodes, with 16 processors per node
 - max of 2048 MPI tasks
 - remaining procs/node used via OpenMP threads
Zonal based spatial decomposition leads to nodal values on overlapped grids

Decomposed grid with overlaps
Nodal ownership is direction dependent
Energy group decomposition

- Assume 1 group per processor (G processors)
- Broadcast operations needed to calculate $S \Psi$ where

$$S = \begin{bmatrix}
S_{11} & \cdots & S_{1G} \\
\vdots & \ddots & \vdots \\
S_{g1} & \cdots & S_{gG} \\
\vdots & \ddots & \vdots \\
S_{G1} & \cdots & S_{GG}
\end{bmatrix} \quad \text{and} \quad \Psi = \begin{bmatrix}
\Psi_1 \\
\vdots \\
\Psi_g \\
\vdots \\
\Psi_G
\end{bmatrix}$$
Communication involved in residual evaluations

- Communication of nodal data to overlapped mesh for each direction
- Broadcast operations for scattering operator
- 2-dimensional processor topology
Preconditioning strategies

- GMRES iterative solver used for \(T \Psi = F \)
- Exploit matrix structure and physics
- Matrix structure

\[
T = \begin{bmatrix}
T_{11} & \cdots & T_{1G} \\
\vdots & \ddots & \vdots \\
T_{G1} & \cdots & T_{GG}
\end{bmatrix}
\]

where each \(T_{gg} = H_g - S_{gg} \)

\[
H_g = \text{diag}(H_{g1}, \cdots, H_{gL})
\]

and

\[
H_{gd} =
\]

CASC
Preconditioners using matrix structure

- Use lower triangular part of T in energy
 $$P = \begin{bmatrix} T_{11} & 0 \\ \vdots & \ddots \\ T_{G1} & \cdots & T_{GG} \end{bmatrix}$$
 with blocks $T_{gg} = H_g (I - H_g^{-1} S_{gg})$

- H_{gd}^{-1} approximated by block Jacobi iteration, where
 $$H_{gd} = \begin{bmatrix} & & \cdots & \cdots & \cdots \\ & & \ddots & \ddots & \ddots \\ & \ddots & \ddots & \ddots & \ddots \\ \cdots & \ddots & \ddots & \ddots & \ddots \\ \cdots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$
Block Jacobi convergence

- Convergence in \(npx + npy + npz - 2 \) steps in 3D
- The smaller \(\Delta t \) the more “effective” absorption, and hence should get convergence in fewer steps
- Norm-based stopping test needs a global reduction, so use a fixed # of steps for time dependent problems
- Steady state problems require full # of steps
Preconditioners based on physics

- \((I - H_g^{-1} S_{gg})^{-1}\) approximated using
 - matrix based on DSA
 - source iteration (with/without DSA)
 - BiCGSTAB iteration (with/without DSA)

- DSA solution
 - 27-point stencil defined on overlapped nodal mesh
 - singular diffusion matrix
 - approximate solution given by CASC hypre SMG multigrid solver

- Operator-split preconditioners use full matrix
Scalability studies on ASCI Blue and White

Time dependent study (Blue)
- 1 block Jacobi iteration
- 30x30x30 zones & 24 directions/processor
- Simple box problem

Two steady state studies (White)
- DSA + full block Jacobi iter.
 4 GMRES iter-s for all sizes
- Full block Jacobi iter.
 2 GMRES iter-s for all sizes
Hybrid MPI/OpenMP implementation

- Threaded implementation outperforms pure MPI implementation
- Test problem with 60x60x60 spatial zones and 24 directions per processor

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Pure MPI (N nodes; N MPI tasks 1 processor per node)</th>
<th>Hybrid MPI/OpenMP (N nodes; N MPI tasks 4 processors per node)</th>
<th>Pure MPI (N nodes; 4N MPI tasks 4 processors per node)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>674.36 sec</td>
<td>222.15 sec speedup: 3.04 efficiency: 76%</td>
<td>203.01 sec speedup: 3.02 efficiency: 76%</td>
</tr>
<tr>
<td>8</td>
<td>804.99 sec</td>
<td>320.17 sec speedup: 2.52 efficiency: 63%</td>
<td>292.82 sec speedup: 2.75 efficiency: 69%</td>
</tr>
<tr>
<td>64</td>
<td>1437.27 sec</td>
<td>695.42 sec speedup: 2.07 efficiency: 52%</td>
<td>767.10 sec speedup: 1.87 efficiency: 47%</td>
</tr>
<tr>
<td>128</td>
<td>1596.25 sec</td>
<td>800.69 sec speedup: 1.99 efficiency: 50%</td>
<td>935.64 sec speedup: 1.71 efficiency: 43%</td>
</tr>
</tbody>
</table>
Large neutron time dependent run on ASCI White (NIF Target Bay)

Run on ASCI White:
9 billion unknowns
(400x400x800 spatial zones, 24 directions, 3 energy groups)
Pulsed neutron point source

Hybrid MPI/OpenMP Implementation
used 4,096 processors (1,024 MPI tasks with 4 threads per task)
Future work

- Development of adaptive techniques using structured adaptive mesh refinement
 - full finite element discretization approach
 - adaptive refinement in all of phase space
 - multilevel solution
- Better scattering kernel representation when using finite elements
- Implement corner balance in our code
- Implement operator-split preconditioner