Parallel Repeatability in TAXI

Timmie Smith

Parasol
Smarter computing.
Texas A&M University
Problem

• Inconsistencies noticed during testing of GMRES and Stretched and Filtered (SF) TSA
 • Same input, machine, and number of threads
 • Reported fluxes would differ, but were within tolerance of correct solution
 • Number of iterations needed to find solution also varied

• Numerical error from two sources
 • Single thread additions
 • Non-deterministic behavior between threads
Optically thick highly scattering problem
 - Scattering ratio of 0.999999
 - Large interaction cross section
 - Particles take many iterations to exit the problem

Krylov methods are sensitive to roundoff error in highly ill-conditioned problems such as this.

Days to solve using source iteration (SI) only

Using SF TSA and GMRES 4 processor runs took 7.5 minutes on TAMU CS Linux cluster
 - 10x10x3 Grid
 - Single Energy Group
 - S_4 problem (S_2 in TSA)
Sources of Error and Solutions

- GMRES requires computing dot products of the fluxes in the problem.
 - Order-dependent round-off error can occur within and between threads.
- Per thread order-dependent round-off error occurs in addition of fluxes.
 - Fixed by sorting the fluxes by absolute value before addition.
- Run-to-run differences occur when partial sums from threads being added in different order.
 - Corrected by declaring the sum to be non-commutative
 - Only required changing a boolean value in the call to reduce_rmi()
Sources of Errors and Solutions

- Inconsistent rounding error from adding partial results of sweeps in different directions
 - The contribution from each direction's angular flux is added to the scalar flux as it is calculated.
 - Adding contributions in different orders causes small inconsistencies
- Fixed by forcing the executor to process a single direction at a time instead of selecting an available pRange from any direction.
 - Reduces the amount of available parallelism
 - A better solution to add edges to the DDG between directions will not reduce parallelism as much.
Example

- 10x10x3 grid
- Single Energy Group
- S4 problem
 - 24 angles, 8 anglesets
- 5 runs of each version.

<table>
<thead>
<tr>
<th>Code Version</th>
<th>Original</th>
<th>Deterministic pArray</th>
<th>Deterministic Executor</th>
<th>Deterministic pArray/Exec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation in # of Outer Iterations</td>
<td>198</td>
<td>356</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>