PERCS: IBM Effort in HPCS

Mootaz Elnozahy
IBM Austin Research Lab
Overview

- Team
- Design constraints
- Vision
- Technical overview
- Conclusion
The Team

• IBM
 – Austin Research
 – Watson Research
 – Server Group
 – Software Group
 – Microelectronics

• Partners
 – UIUC
 – UT
 – MIT
 – Pittsburgh
 – LANL
 – RPI
 – New Mexico
 – Cornell
 – UC Berkeley
 – Purdue
 – Wisconsin
 – U of Del
 – Vanderbilt
 – Dartmouth
Design Constraints

- Legacy investments
- Looming technology crisis
- HPC customer diversity
- Business model
 - Must do well both on commercial and scientific workloads
- Cost issues
 - Threat of commoditization
- Productivity as a main theme
IBM’s Vision

A dynamic system that adapts to application needs

The strategy

• Aggressive productivity targets
• Commercial viability
• Link into product cycle toward end of phase 2
Innovation with Commercial Viability

- **Adaptability is key**
 - Architecture gets closer to application needs, yielding better performance and broader application range

- **Backward compatibility with PowerPC**
 - Leverages existing infrastructure, training and investment
 - Exploits proven ability of the current architecture to perform well for many apps

- Leverage open source

- Modular design packaged in different configurations
Suggested PERCS Roadmap

Cell

BG/L

Power4 Power5 Power6 PowerX

PERCS

Phase 1 Phase 2 Phase 3
Technical Overview
Scope

- Application focus
 - Commercial
 - Security
 - HPC
 - Bioinformatics
 - Data streaming
 - New 2010-apps ??

- Integrated solution

Programming & user interface
System software
Architecture
Technology
Productivity Metrics

• **A theory for productivity that**
 – Reflects the importance of time-to-solution
 – Incorporates
 • Software development
 • Maintenance costs
 • Hardware costs
 • Tradeoffs among the three
 – Uses $ as a common denominator

• **Measurable system metrics:**
 – Characterize the productivity of programming environments and execution platforms
 • Experiments with programmers
 – Weighted according to application set and customer goals
Architecture Innovations

- **Adaptation**
 - Vector/stream processor morphs
 - Memory-in-processor morph (PIM-like programming model with practical hardware)
 - SMT and conventional caches for commercial apps

- **Proactive memory architecture**
 - Embedding intelligence across memory hierarchy for better performance and lower latency

- **Leverage IBM’s technology advantages**
 - Aggressive hardware design
 - New revolutionary packaging and device technologies subject to practicality & cost
Programming Model Work

- Support for newer programming languages
 - UPC, StreamIt, and domain-specific language
- Morphogenic software process
 - Bridging the gap between domain experts and programmers
- New and revised abstractions
 - Enclaves, atomic actions and asynchronous calls
- Aggressive compiler support
- Integrated development environments, visual tools & component-based software
 - Integrate best practices from commercial into HPC
Infrastructure Work

- K-42 operating system
 - Design for scalability from scratch
- High-level automated verification
 - Hardware and software
- Design for low-power, high-performance circuits
- Continuous performance monitoring and automatic tuning
- Robustness:
 - New programmer-transparent efficient checkpointing
 - Self-healing autonomic middleware
Getting It Right! PERCSim

- Feedback to hardware & software designers
 - Test-bed for quick evaluation of “what if” questions across all system levels
- Pre-hardware software development
 - Tuning and evaluation well before design freeze
- Speeds up verification and enhance methodology
- Execution-driven
 - Better represents scalable multiprocessors compared to traditional tracing (e.g. synchronization traffic)
- Power management support
Example: SPEC SDET
Summary

• An ambitious vision for adapting systems to applications
 – Solve productivity problems of HPC community
 – Explore technologies otherwise deemed too risky
 – Economic viability

• Breadth and depth of IBM’s R&D behind the effort
 – Record of innovation with reliability & delivery

• HPCS will have a strong impact on IBM and universities
 – We hope to change status quo