Focus problem for ASP: Pipe

- Idealized rocket engine segment
- Large passage
 - Chemically reacting, high-pressure, high-velocity gas
- Smaller passages
 - Cooling fluid

- Initial crack defect in pipe wall
- Question: How does the flaw propagate?
Pipe Geography
Software architecture: problems

• Combination of legacy code and new code

• Codes implemented in several languages (C++, Java, Python,…) and on several platforms (Linux, Wintel, IBM SP, …)
 – Impractical to re-implement legacy code in a single language
 – Impractical to mandate single language for all new code

• Researchers distributed geographically
Software architecture: ASP solution

- **Components**
 - exposed as web services
 - server located at appropriate developer site
- **Workflow defined by client**
- **Communication**
 - SOAP: industry-standard RPC API
 - XML-based data formats for geometry/mesh/…: Vavasis et al
Why distributed components?

- Why components?
 - Modularity
 - Essential for adaptivity
 - Common, standard interfaces
 - Late binding of modules

- Why distributed?
 - Respect each developer’s choice of language, compiler, and platform
 - “Write once, run from anywhere”
 - Software maintenance is easier
 - No need to port code to multiple platforms
 - No need to download/re-compile/re-link bug fixes or new releases of software
Key problem: fault tolerance

- How does client specify parallelism in component invocation?
- How can we get transparent fault-tolerance for components?
- How does client specify what action to take when a component fails?
- How does a client itself survive faults?