CH 5: STACKS, QUEUES, AND DEQUES

ACKNOWLEDGMENT: THE SLIDES ARE PREPARED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM JORY DENNY AND MUKULIKA GHOSH
The Stack ADT (Ch. 5.1.1)
Array-based implementation (Ch. 5.1.4)
Growable array-based stack
Singly list implementation (Ch 5.1.5)
STACKS

- A stack is a container with visibility and access through one end known as top element.
- LIFO – Last In First Out Principle
- Practical Applications:
 - Web browser history of pages: Back button
 - Editors: Undo button
 - Runtime Stack: Nested Function calls and storage of parameters, variables, return address, etc.
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures
STACK ADT

- Stores arbitrary objects
- Insertions, deletion, modification and access is allowed through the top element.
- Main Operations:
 - `push(e)` – inserts element e at the top of the stack
 - `pop()` – removes the top element from the stack
 - `top()` – returns the top element without removing it
- Auxiliary operations:
 - `size()` – Number of elements in the stack
 - `empty()` – True if the stack contains no elements
- Removing or accessing an element in an empty stack returns an exception called `EmptyStackException`.
Show the stack after each of these operations:

- Push(5)
- Push(3)
- Pop()
- Push(2)
- Push(8)
- Pop()
- Pop()
- Pop()
- Pop()
- Push(1)
The C++ run-time system keeps track of the chain of active functions with a stack.

- When a function is called, the system pushes on the stack a frame containing:
 - Local variables and return value
 - Program counter, keeping track of the statement being executed
- When the function ends, its frame is popped from the stack and control is passed to the function on top of the stack.

```cpp
main() {
    int i;
    i = 5;
    foo(i);
}

foo(int j) {
    int k;
    k = j+1;
    bar(k);
}

bar(int m) {
    ...
}
```
Array based implementation is the simplest
- Add elements from left to right of the array
- Keep track of the top element's index in a variable t
- What's the problem with this implementation?

```
Algorithm pop()
if empty() then
    throw StackEmptyException
else
    t += 1
    return S[t + 1]
```

```
Algorithm push(e)
    t += 1
    S[t] = e
```
ARRAY BASED STACK IMPLEMENTATION

- The array storing the stack elements may become full
- A push operation will then throw a `StackFullException`
 - Limitation of the array-based implementation
 - Not intrinsic to the Stack ADT

```
Algorithm pop()
if empty() then
   throw StackEmptyException
else
   t := t + 1
   return S[t + 1]

Algorithm push(e)
if full() then
   throw StackFullException
else
   t := t + 1
   S[t] := e
```

Algorithm full()
return size() = S.length
ALGORITHMIC COMPLEXITY ANALYSIS

- Computer Scientists are concerned with describing how long and how much memory an algorithm (computation) takes, known as time and space complexity of the algorithm.
 - Described through functions which show how time or space grows as function of input, note that there are no constants!
 - $O(1)$ – Constant time
 - $O(\log n)$ - Logarithmic time
 - $O(n)$ – Linear time
 - $O(n^2)$ – Quadratic time
STACK PERFORMANCE

<table>
<thead>
<tr>
<th>Function</th>
<th>Array Fixed Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop()</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>push(e)</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>top()</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>size(), empty()</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
PERFORMANCE AND LIMITATIONS

- **Performance**
 - Let n be the number of elements in the stack
 - The space used is $O(n)$
 - Each operation runs in time $O(1)$

- **Limitations**
 - The maximum size of the stack must be defined a priori and cannot be changed
 - Trying to push a new element into a full stack causes an implementation-specific exception
Instead of throwing an exception while pushing to a filled stack, replace the array with a larger array.

How much to increase to?

- **incremental strategy**: increase the size by a constant c,
 \[l \leftarrow S.\text{length} + c \]

- **doubling strategy**: double the size,
 \[l \leftarrow 2 \times S.\text{length} \]

Algorithm push(e)

```plaintext
if size() = S.length then
    A \leftarrow \text{new array of length } l
    \text{for } i \leftarrow 0 \text{ to } t \text{ do}
        A[i] \leftarrow S[i]
        S \leftarrow A
    t \leftarrow t + 1
    S[t] \leftarrow e
```
We compare the incremental strategy and the doubling strategy by analyzing the total time $T(n)$ needed to perform a series of n push operations.

- We assume that we start with an empty stack represented.
- We say the amortized time of a push operation is the average time taken by a push over the series of operations, i.e., $T(n)/n$.
INCREMENTAL STRATEGY ANALYSIS

- Let \(c \) be the constant increase and \(n \) be the number of push operations.
- Not counting the copies, we do \(n \) pushes, each taking \(O(1) \) time, or \(O(n) \) total for the pushes themselves.
- We replace the array \(k = n/c \) times.
 - The 1st copy requires time \(c \), the 2\(^{nd} \) time it takes time \(2c \), the 3\(^{rd} \) time it takes time \(3c \), \ldots, the last time it takes time \(kc \).
 - So over all \(n \) operations, the total cost for copying the array is \(c + 2c + 3c + \ldots + kc \).
- The total time \(T(n) \) of a series of \(n \) push operations, including the copies, is:
 - \(T(n) = \text{Time for pushes alone} + \text{Time for copies} \)
 - \(= n + c + 2c + 3c + 4c + \ldots + kc = n + c(1 + 2 + 3 + \ldots + k) \)
 - \(= n + c \frac{k(k+1)}{2} \)
 - \(= O(n + k^2) = O\left(n + \frac{n^2}{c}\right) = O(n^2) \)
- \(T(n) \) is \(O(n^2) \) so the amortized time of a push is \(\frac{O(n^2)}{n} = O(n) \).

Note:
\[
1 + 2 + \cdots + k = \sum_{i=0}^{k} i = \frac{k(k + 1)}{2}
\]
We replace the array $k = \log_2 n$ times.

The total time $T(n)$ of a series of n push operations is proportional to

$$n + 1 + 2 + 4 + 8 + \ldots + 2^k$$

$$= n + 2^{k+1} - 1$$

$$= O(n + 2^k) = O(n + 2^{\log_2 n}) = O(n)$$

$T(n)$ is $O(n)$ so the amortized time of a push is

$$\frac{O(n)}{n} = O(1)$$
STACK PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>Array Fixed Capacity</th>
<th>Growable Array (Doubling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>push(e)</td>
<td>$O(1)$</td>
<td>$O(n)$ Worst Case $O(1)$ Best Case $O(1)$ Average Case</td>
</tr>
<tr>
<td>top()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>size(), empty()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
We can implement a stack with a singly linked list.

- The top element is stored at the first node of the list.
- The space used is $O(n)$ and each operation of the Stack ADT takes $O(1)$ time.
Describe how to implement a stack using a singly-linked list

- Stack operations: push(x), pop(), size(), empty()
- For each operation, give the running time
Stack Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Array Fixed Capacity</th>
<th>Growable Array (Doubling)</th>
<th>Singly Linked List</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>push(e)</td>
<td>$O(1)$</td>
<td>$O(n)$ Worst Case</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(1)$ Best Case</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(1)$ Average Case</td>
<td></td>
</tr>
<tr>
<td>top()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>size(), empty()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
QUEUES - OUTLINE

- The Queue ADT (Ch. 5.2.1)
- Implementation with a circular array (Ch. 5.2.4)
 - Growable array-based queue
- List-based queue
QUEUES

- Container storing arbitrary objects such that insertions allowed at one end called **back** and removal from other end called **front**.

- **FIFO** – First In First Out scheme

- Practical applications:
 - Waiting lines
 - Scheduling – Task, shared resources (printer) access
 - Multiprogramming

- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures
QUEUE ADT

- Insertions and deletions follow the first-in first-out scheme
- Insertions are at the rear of the queue and removals are at the front of the queue
- Main operations:
 - `enqueue(e)`: inserts an element `e` at the end of the queue
 - `dequeue()`: removes the element at the front of the queue
- Auxiliary queue operations:
 - `front()`: returns the element at the front without removing it
 - `size()`: returns the number of elements stored
 - `empty()`: returns a Boolean value indicating whether no elements are stored
- Application of `dequeue()` on an empty queue throws `EmptyQueueException`
Show the queue after each of the following operations:

- enqueue(5)
- enqueue(3)
- dequeue()
- enqueue(2)
- enqueue(8)
- dequeue()
- dequeue()
- dequeue()
- dequeue()
- enqueue(9)
- Use an array of size N in a circular fashion
- Two variables keep track of the front and rear
 - f: index of the front element
 - r: index immediately past the rear element
- Array location r is kept empty
Use modulo operator (finds the remainder of a division)

Algorithm size()
\[\text{return } (N - f + r) \mod N \]

Algorithm empty()
\[\text{return } f = r \]
Operation enqueue throws an exception if the array is full.
This exception is implementation-dependent.

Algorithm enqueue(e)
if size() = N - 1 then
 throw FullQueueException
Q[r] ← e
r ← r + 1 mod N
Operation dequeue throws an exception if the queue is empty
- This exception is specified in the queue ADT

Algorithm dequeue()

```plaintext
if empty() then
    throw EmptyQueueException

o ← Q[f]

f ← f + 1 mod N

return o
```
PERFORMANCE AND LIMITATIONS – ARRAY BASED QUEUE

- **Performance**
 - Let n be the number of elements in the queue
 - The space used is $O(n)$
 - Each operation runs in time $O(1)$

- **Limitations**
 - The maximum size of the queue must be defined *a priori*, and cannot be changed
 - Trying to push a new element into a full queue causes an implementation-specific exception
In `enqueue(e)`, if the queue is full, similar to growable array-based stack, instead of throwing an exception, we can replace the array with a larger one.

`enqueue(e)` has amortized running time
- $O(n)$ with the incremental strategy
- $O(1)$ with the doubling strategy
Describe how to implement a queue using a singly-linked list

- Queue operations: enqueue(e), dequeue(), size(), empty()
- For each operation, give the running time
QUEUE SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>Array with fixed capacity</th>
<th>Growable array (doubling)</th>
<th>Singly linked list</th>
</tr>
</thead>
<tbody>
<tr>
<td>dequeue()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
| enqueue(e) | $O(1)$ | $O(n)$ Worst Case
 | $O(1)$ Best Case
 | $O(1)$ Average Case |
| front() | $O(1)$ | $O(1)$ | $O(1)$ |
| size(), empty()| $O(1)$ | $O(1)$ | $O(1)$ |
The Double-Ended Queue, or Deque, ADT stores arbitrary objects. (Pronounced ‘deck’)

- Supports insertions and deletions at both ends: front and back.
- Main deque operations:
 - `insertFront(e)`: inserts element `e` at the beginning of the deque
 - `insertBack(e)`: inserts element `e` at the end of the deque
 - `eraseFront()`: removes and returns the element at the front of the queue
 - `eraseBack()`: removes and returns the element at the end of the queue

- Auxiliary queue operations:
 - `front()`: returns the element at the front without removing it
 - `back()`: returns the element at the front without removing it
 - `size()`: returns the number of elements stored
 - `empty()`: returns a Boolean value indicating whether no elements are stored

- Exceptions
 - Attempting the execution of `dequeue` or `front` on an empty queue throws an `EmptyDequeException`
EXERCISE

- Deque operations: `insertfront(e)`, `insertback(e)`, `erasefront(e)`, `eraseback(e)`, `size()`, `empty()`

- Describe how to implement a deque using each of the following data structures. For each case, describe the running time of the operations.
 - growable array
 - singly-linked list
DOUBLY LINKED LIST BASED DEQUE

- The front element is stored at the first node
- The rear element is stored at the last node
- The space used is \(O(n) \) and each operation of the Deque ADT takes \(O(1) \) time
PERFORMANCE AND LIMITATIONS – DOUBLY LINKED LIST BASED DEQUE

- Performance
 - Let \(n \) be the number of elements in the stack
 - The space used is \(O(n) \)
 - Each operation runs in time \(O(1) \)

- Limitations
 - NOTE: we do not have the limitation of the array based implementation on the size of the stack b/c the size of the linked list is not fixed, i.e., the deque is NEVER full.
EXERCISE

- Deque operations: `insertfront(e)`, `insertback(e)`, `erasefront(e)`, `eraseback(e)`, `size()`, `empty()`

- Describe how to implement a deque using a doubly-linked list. Describe the running time of the operations.
DEQUE SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>Array Fixed capacity</th>
<th>Growable array (doubling)</th>
<th>Singly linked list</th>
<th>Doubly linked list</th>
</tr>
</thead>
<tbody>
<tr>
<td>eraseFront(), eraseBack()</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(n) for one at list tail, 0(1) for other</td>
<td>0(1)</td>
</tr>
<tr>
<td>insertFront(o), insertBack(o)</td>
<td>0(1)</td>
<td>0(n) Worst Case 0(1) Best Case 0(1) Average Case</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>front(), back()</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>size(), empty()</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
</tbody>
</table>