CH. 8
PRIORITY QUEUES AND HEAPS
OUTLINE AND READING

- PriorityQueue ADT (Ch. 8.1)
 - Total order relation (Ch. 8.1.1)
 - Comparator ADT (Ch. 8.1.2)
 - Implementing a PQ with a list (Ch. 8.2)
- Heaps (Ch. 8.3)
 - Complete Binary Trees (Ch. 8.3.2)
 - Implementing a PQ with a heap (Ch. 8.3.3)
- Sorting with Priority Queue (Ch 8.1.5)
 - List based PQ: Selection-sort and Insertion Sort (Ch. 8.2.2)
 - Heaps: Heapsort (Ch. 8.3.5)
PRIORITY QUEUES

- Stores a collection of elements each with an associated “key” value
 - Can insert as many elements in any order
 - Only can inspect and remove a single element – the minimum (or maximum depending) element

- Applications
 - Standby Flyers
 - Auctions
 - Stock market
TOTAL ORDER RELATION

- Keys in a priority queue can be arbitrary objects on which an order is defined, e.g., integers
- Two distinct items in a priority queue can have the same key

- Mathematical concept of total order relation \(\leq \)
 - Reflexive property: \(k \leq k \)
 - Antisymmetric property: if \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \), then \(k_1 = k_2 \)
 - Transitive property: if \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \) then \(k_1 \leq k_3 \)
• A comparator encapsulates the action of comparing two objects according to a given total order relation
• A generic priority queue uses a comparator as a template argument, to define the comparison function \((\leq)\)
• The comparator is external to the keys being compared. Thus, the same objects can be sorted in different ways by using different comparators.
• When the priority queue needs to compare two keys, it uses its comparator
A priority queue stores a collection of items each with an associated “key” value

Main methods
- `insert(e)` – inserts an element `e`
- `removeMin()` – removes the item with the smallest key
- `min()` – return an element with the smallest key
- `size()`, `empty()`
LIST-BASED PRIORITY QUEUE

Unsorted list implementation
- Store the items of the priority queue in a list, in arbitrary order

4 5 2 3 1

- Performance:
 - `insert(e)` takes $O(1)$ time since we can insert the item at the beginning or end of the list
 - `removeMin()` and `min()` take $O(n)$ time since we have to traverse the entire sequence to find the smallest key

Sorted list implementation
- Store the items of the priority queue in a list, sorted by key

1 2 3 4 5

- Performance:
 - `insert(e)` takes $O(n)$ time since we have to find the place where to insert the item
 - `removeMin()` and `min()` take $O(1)$ time since the smallest key is at the beginning of the list
HEAPS
WHAT IS A HEAP?

• A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 • **Heap-Order**: for every node v other than the root,
 \[\text{key}(v) \geq \text{key}(v.\text{parent}) \]
 • **Complete Binary Tree**: let h be the height of the heap
 • for $i = 0 \ldots h - 1$, there are 2^i nodes on level i
 • at level h, nodes are filled from left to right
• Can be used to store a priority queue efficiently
HEIGHT OF A HEAP

- **Theorem:** A heap storing \(n \) keys has height \(O(\log n) \)
- **Proof:** (we apply the complete binary tree property)
 - Let \(h \) be the height of a heap storing \(h \) keys
 - Since there are \(2^i \) keys at level \(i = 0 \) ... \(h - 1 \) and at least one key on level \(h \), we have
 \[
 n \geq 1 + 2 + 4 + \cdots + 2^{h-1} + 1 = (2^h - 1) + 1 = 2^h
 \]
 - Level \(h \) has at most \(2^h \) nodes: \(n \leq 2^{h+1} - 1 \)
 - Thus, \(\log(n + 1) - 1 \leq h \leq \log n \)
EXERCISE
HEAPS

Let H be a heap with 7 distinct elements (1, 2, 3, 4, 5, 6, and 7). Is it possible that a preorder traversal visits the elements in sorted order? What about an inorder traversal or a postorder traversal? In each case, either show such a heap or prove that none exists.

- A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - **Heap-Order**: for every node v other than the root,
 \[\text{key}(v) \geq \text{key}(v.\text{parent}()) \]
 - **Complete Binary Tree**: let h be the height of the heap
 - for $i = 0 \ldots h - 1$, there are 2^i nodes on level i
 - at level h, nodes are filled from left to right
INSERTION INTO A HEAP

- insert(e) consists of three steps
 - Find the insertion node z (the new last node)
 - Store e at z and expand z into an internal node
 - Restore the heap-order property (discussed next)
After the insertion of a new element e, the heap-order property may be violated.

Up-heap bubbling restores the heap-order property by swapping e along an upward path from the insertion node.

Upheap terminates when e reaches the root or a node whose parent has a key smaller than or equal to $\text{key}(e)$.

Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time.
REMOVAL FROM A HEAP

- `removeMin()` corresponds to the removal of the root from the heap.
- The removal algorithm consists of three steps:
 - Replace the root with the element of the last node \(w \).
 - Compress \(w \) and its children into a leaf.
 - Restore the heap-order property (discussed next).
• After replacing the root element of the last node, the heap-order property may be violated.

• **Down-heap bubbling** restores the heap-order property by swapping element e along a downward path from the root.

• Downheap terminates when e reaches a leaf or a node whose children have keys greater than or equal to $\text{key}(e)$.

• Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time.
The insertion node can be found by traversing a path of $O(\log n)$ nodes
- Go up until a left child or the root is reached
- If a left child is reached, go to the right child
- Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal
VECTOR-BASED HEAP IMPLEMENTATION

- We can represent a heap with n elements by means of a vector of length $n + 1$
 - Links between nodes are not explicitly stored
 - The leaves are not represented
 - The cell at index 0 is not used
- For the node at index i
 - the left child is at index $2i$
 - the right child is at index $2i + 1$
- $\text{insert}(e)$ corresponds to inserting at index $n + 1$
- $\text{removeMin}()$ corresponds to removing element at index n
- Yields in-place heap-sort
MERGING TWO HEAPS

- We are given two heaps and a new element e
- We create a new heap with a root node storing e and with the two heaps as subtrees
- We perform downheap to restore the heap-order property
• We can construct a heap storing \(n \) given elements in using a bottom-up construction with \(\log n \) phases.

• In phase \(i \), pairs of heaps with \(2^i - 1 \) elements are merged into heaps with \(2^{i+1} - 1 \) elements.
EXAMPLE

```
16  15  4  12  6  7  23  20
```

```
25  16  15  4  12  6  7  23  20
```

```
11  5  12  6  7  23  20
```
EXAMPLE
ANALYSIS

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
PRIORITY QUEUE SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>Insert e</th>
<th>Remove Min ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered List</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Unordered List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Binary Heap,</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Vector-based Heap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADAPTABLE PRIORITY QUEUES

- One weakness of the priority queues so far is that we do not have an ability to update individual entries, like in a changing price market or bidding service.
- We incorporate concept of **positions** to accomplish this (similar to List).
- Additional ADT support (also includes standard priority queue functionality):
 - `insert(e)` – insert element `e` into priority queue and return a position referring to this entry.
 - `remove(p)` – remove the entry referenced by position `p`.
 - `replace(p, e)` – replace with `e` the element associated with position `p` and return the position of the altered entry.
- **Locators** decouple positions and entries in order to support efficient adaptable priority queue implementations (i.e., in a heap)
- Each position has an associated locator
- Each locator stores a pointer to its position and memory for the entry
POSSESSIONS VS. LOCATORS

• Position
 • represents a “place” in a data structure
 • related to other positions in the data structure (e.g., previous/next or parent/child)
 • often implemented as a pointer to a node or the index of an array cell
• Position-based ADTs (e.g., sequence and tree) are fundamental data storage schemes

• Locator
 • identifies and tracks a (key, element) item
 • unrelated to other locators in the data structure
 • often implemented as an object storing the item and its position in the underlying structure
• Key-based ADTs (e.g., priority queue) can be augmented with locator-based methods
We can use a priority queue to sort a set of comparable elements.

Insert the elements one by one with a series of `insert(e)` operations.

Remove the elements in sorted order with a series of `removeMin()` operations.

Running time depends on the PQ implementation.
Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list:

- Running time of Selection-sort:
 - Inserting the elements into the priority queue with \(n \) insert\((e)\) operations takes \(O(n) \) time
 - Removing the elements in sorted order from the priority queue with \(n \) removeMin() operations takes time proportional to
 \[
 \sum_{i=0}^{n} n - i = n + (n - 1) + \ldots + 2 + 1 = O(n^2)
 \]
 - Selection-sort runs in \(O(n^2) \) time
• Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list (do \(n \) insert(\(e \)) and then \(n \) removeMin(\())\)

• Illustrate the performance of selection-sort on the following input sequence:
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted List

- Running time of Insertion-sort:

 - Inserting the elements into the priority queue with n insert(e) operations takes time proportional to
 $$\sum_{i=0}^{n} i = 1 + 2 + \cdots + n = O(n^2)$$

 - Removing the elements in sorted order from the priority queue with a series of n removeMin() operations takes $O(n)$ time

- Insertion-sort runs in $O(n^2)$ time
• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted list (do n \text{insert}(e)$ and then n \text{removeMin}())

• Illustrate the performance of insertion-sort on the following input sequence:
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
• Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place (only $O(1)$ extra storage)

• A portion of the input list itself serves as the priority queue

• For in-place insertion-sort
 • We keep sorted the initial portion of the list
 • We can use swap(i, j) instead of modifying the list
• Consider a priority queue with n items implemented by means of a heap
 • the space used is $O(n)$
 • $\text{insert}(e)$ and removeMin() take $O(\log n)$ time
 • $\text{min()}, \text{size()}, \text{and empty()}$ take $O(1)$ time

• Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
• The resulting algorithm is called heap-sort
• Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort
• Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort
Heap-sort is the variation of PQ-sort where the priority queue is implemented with a heap (do \(n \text{ insert}(e) \) and then \(n \text{ removeMin()} \)).

Illustrate the performance of heap-sort on the following input sequence (draw the heap at each step):

- \((22, 15, 36, 44, 10, 3, 9, 13, 29, 25) \)
Priority Queue Summary

<table>
<thead>
<tr>
<th></th>
<th>$\text{insert}(e)$</th>
<th>$\text{removeMin}()$</th>
<th>PQ-Sort total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered List</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>(Insertion Sort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unordered List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>(Selection Sort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Heap, Vector-based Heap</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>