CH 9.4 : SKIP LISTS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM JORY DENNY AND MUKULKA GHOSH
A skip list for a set S of distinct (key, element) items is a series of lists $S_0, S_1, ..., S_h$

- Each list S_i contains the special keys $+\infty$ and $-\infty$
- List S_0 contains the keys of S in non-decreasing order
- Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq ... \supseteq S_h$
- List S_h contains only the two special keys

Skip lists are one way to implement the Ordered Map ADT

Java applet

```
S_3  -\infty  +\infty
S_2  -\infty  31  +\infty
S_1  -\infty  23  31  34  64  +\infty
S_0  -\infty  12  23  26  31  34  44  56  64  78  +\infty
```
We can implement a skip list with quad-nodes

- A quad-node stores:
 - (Key, Value)
 - links to the nodes before, after, below, and above
- Also, we define special keys $+\infty$ and $-\infty$, and we modify the key comparator to handle them
We search for a key \(k \) in a skip list as follows:

- We start at the first position of the top list
- At the current position \(p \), we compare \(k \) with \(y \leftarrow p \).next().key()
 - \(k = y \): we return \(p \).next().value()
 - \(k > y \): we scan forward
 - \(k < y \): we drop down
- If we try to drop down past the bottom list, we return \textit{NO_SUCH_KEY}

Example: search for 78

\[S_3 \]
\[S_2 \]
\[S_1 \]
\[S_0 \]
We search for a key k in a skip list as follows:

- We start at the first position of the top list
- At the current position p, we compare k with $y \leftarrow p$.next().key()
 - $k = y$: we return p.next().value()
 - $k > y$: we scan forward
 - $k < y$: we drop down
- If we try to drop down past the bottom list, we return `NO_SUCH_KEY`

Ex 1: search for 64: list the $(S_i, node)$ pairs visited and the return value

Ex 2: search for 27: list the $(S_i, node)$ pairs visited and the return value
To insert an item \((k,v)\) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails, and we denote with \(i\) the number of times the coin came up heads.
- If \(i \geq h\), we add to the skip list new lists \(S_{h+1},\ldots,S_{i+1}\) each containing only the two special keys.
- We search for \(k\) in the skip list and find the positions \(p_0,p_1,\ldots,p_i\) of the items with largest key less than \(k\) in each list \(S_0,S_1,\ldots,S_i\).
- For \(i \leftarrow 0,\ldots,i\), we insert item \((k,v)\) into list \(S_i\) after position \(p_i\).

Example: insert key 15, with \(i = 2\)
To remove an item with key k from a skip list, we proceed as follows:

- We search for k in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key k, where position p_i is in list S_i.
- We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$.
- We remove all but one list containing only the two special keys.

Example: remove key 34
The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.

We use the following two basic probabilistic facts:

- Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^i}$.
- Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np.

Consider a skip list with n items

- By Fact 1, we insert an item in list S_i with probability $\frac{1}{2^i}$.
- By Fact 2, the expected size of list S_i is $\frac{n}{2^i}$.

The expected number of nodes used by the skip list is

$$
\sum_{i=0}^{h} \frac{n}{2^i} = n \sum_{i=0}^{h} \frac{1}{2^i} < 2n
$$

Thus the expected space is $O(2n)$.
The running time of find \((k) \), put \((k, v) \), and erase \((k) \) operations are affected by the height \(h \) of the skip list.

We show that with high probability, a skip list with \(n \) items has height \(O(\log n) \).

We use the following additional probabilistic fact:

Fact 3: If each of \(n \) events has probability \(p \), the probability that at least one event occurs is at most \(np \).

Consider a skip list with \(n \) items.

- By Fact 1, we insert an item in list \(S_i \) with probability \(\frac{1}{2^i} \).
- By Fact 3, the probability that list \(S_i \) has at least one item is at most \(\frac{n}{2^i} \).
- By picking \(i = 3 \log n \), we have that the probability that \(S_{3 \log n} \) has at least one item is at most \(\frac{n}{2^{3 \log n}} = \frac{n}{n^3} = \frac{1}{n^2} \).
- Thus a skip list with \(n \) items has height at most \(3 \log n \) with probability at least \(1 - \frac{1}{n^2} \).
SEARCH AND UPDATE TIMES

- The search time in a skip list is proportional to
 - the number of drop-down steps
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ expected time
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2

When we scan forward in a list, the destination key does not belong to a higher list
- A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scan-forward steps is $O(\log n)$
- We conclude that a search in a skip list takes $O(\log n)$ expected time
- The analysis of insertion and deletion gives similar results
You are working for ObscureDictionaries.com a new online start-up which specializes in sci-fi languages. The CEO wants your team to describe a data structure that will efficiently allow for searching, inserting, and deleting new entries. You believe a skip list is a good idea, but need to convince the CEO. Perform the following:

- Illustrate insertion of “X-wing” into this skip list. Randomly generated (1, 1, 1, 0).
- Illustrate deletion of an incorrect entry “Enterprise”
- Argue the complexity of deleting from a skip list
SUMMARY

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n items:
 - The expected space used is $O(n)$.
 - The expected search, insertion and deletion time is $O(\log n)$.
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.
- Skip lists are fast and simple to implement in practice.