CHAPTER 10
AVL TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM JORY DENNY AND MUKULIKA GHOSH
AVL trees are balanced

- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes:
INSERTION IN AN AVL TREE

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example insert 54:

Before Insertion

After Insertion
TRINODE RESTRUCTURING

- let \((a, b, c)\) be an inorder listing of \(x, y, z\)
- perform the rotations needed to make \(b\) the topmost node of the three

Case 1: single rotation (a left rotation about \(a\))

Case 2: double rotation (a right rotation about \(c\), then a left rotation about \(a\))
unbalanced...

...balanced
Restructuring
Single Rotations
RESTRUCTURING DOUBLE ROTATIONS

double rotation

\[a = z \]
\[b = x \]
\[c = y \]

\[T_0 \]
\[T_1 \]
\[T_2 \]
\[T_3 \]

double rotation

\[a = z \]
\[b = x \]
\[c = y \]

\[T_0 \]
\[T_1 \]
\[T_2 \]
\[T_3 \]

double rotation

\[a = y \]
\[b = x \]
\[c = z \]

\[T_0 \]
\[T_1 \]
\[T_2 \]
\[T_3 \]
EXERCISE
AVL TREES

- Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree
 - 30, 40, 24, 58, 48, 26, 11, 13
- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, \(w \), may cause an imbalance.

- Example:
Let z be the first unbalanced node encountered while travelling up the tree from w (parent of removed node). Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

- We perform $\text{restructure}(x)$ to restore balance at z.

As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.

This can happen at most $O(\log n)$ times. Why?
EXERCISE
AVL TREES

- Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree
 - 30, 40, 24, 58, 48, 26, 11, 13
- Now, remove the item with key 48. Draw the resulting tree
- Now, remove the item with key 58. Draw the resulting tree
Fact: The height of an AVL tree storing \(n \) keys is \(O(\log n) \).

Proof: Let us bound \(n(h) \): the minimum number of internal nodes of an AVL tree of height \(h \).

We easily see that \(n(1) = 1 \) and \(n(2) = 2 \).

For \(n > 2 \), an AVL tree of height \(h \) contains the root node, one AVL subtree of height \(h - 1 \) and another of height \(h - 2 \).

That is, \(n(h) = 1 + n(h-1) + n(h-2) \).

Knowing \(n(h-1) > n(h-2) \), we get \(n(h) > 2n(h-2) \). So

- \(n(h) > 2n(h-2) > 4n(h-4) > 8n(h-6) \), ... (by induction),
- \(n(h) > 2^i n(h-2i) \)

Solving the base case we get: \(n(h) > 2^{\frac{h}{2} - 1} \)

Taking logarithms: \(h < 2 \log n(h) + 2 \)

Thus the height of an AVL tree is \(O(\log n) \).
A single restructure is $O(1)$ – using a linked-structure binary tree

find(k) takes $O(\log n)$ time – height of tree is $O(\log n)$, no restructures needed

put(k, v) takes $O(\log n)$ time
- Initial find is $O(\log n)$
- Restructuring up the tree, maintaining heights is $O(\log n)$

erase(k) takes $O(\log n)$ time
- Initial find is $O(\log n)$
- Restructuring up the tree, maintaining heights is $O(\log n)$
OTHER TYPES OF SELF-BALANCING TREES

- **Splay Trees** – A binary search tree which uses an operation splay (x) to allow for amortized complexity of $O(\log n)$.
- **(2, 4) Trees** – A multiway search tree where every node stores internally a list of entries and has 2, 3, or 4 children. Defines self-balancing operations.
- **Red-Black Trees** – A binary search tree which colors each internal node red or black. Self-balancing dictates changes of colors and required rotation operations.