ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM JORY DENNY AND MUKULIKA GHOSH
A binary search tree is a binary tree storing entries \((k, e)\) (i.e., key-value pairs) at its internal nodes and satisfying the following property:

- Let \(u, v,\) and \(w\) be three nodes such that \(u\) is in the left subtree of \(v\) and \(w\) is in the right subtree of \(v\). Then \(\text{key}(u) \leq \text{key}(v) \leq \text{key}(w)\)
- External nodes do not store items

An inorder traversal of a binary search trees visits the keys in increasing order.
To search for a key k, we trace a downward path starting at the root.

The next node visited depends on the outcome of the comparison of k with the key of the current node.

If we reach a leaf, the key is not found.

Example: find(4)

Algorithms for floorEntry() and ceilingEntry() are similar.

Algorithm Search(k, v)
1. if v.isExternal()
2. return v
3. if $k < v$.key()
4. return Search(k, v.left())
5. else if $k = v$.key()
6. return v
7. else // $k > v$.key()
8. return Search(k, v.right())
Show the search paths for the following keys: 8, 3, 2
To perform operation put\((k, v)\), we search for key \(k\) (using Search\((k)\))

Assume \(k\) is not already in the tree, and let \(w\) be the leaf reached by the search

We insert \(k\) at node \(w\) and expand \(w\) into an internal node

Example: insert 5
• Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
 • 30, 40, 24, 58, 48, 26, 11, 13
DELETION

- To perform operation $\text{erase}(k)$, we search for key k
 - Assume key k is in the tree, and let v be the node storing k
- There are two cases depending on whether the node v storing k
 - V has at least one leaf child
 - Both of v's children are internal nodes
DELETION: THE NODE STORING k HAS A LEAF CHILD

- To perform operation $\text{erase}(k)$, we search for key k
 - Assume key k is in the tree, and let v be the node storing k
- If node v has a leaf child w:
 - we remove v and w from the tree with operation $\text{removeAboveExternal}(w)$, which removes w and its parent
- Example: remove 4
DELETION: THE NODE STORING K HAS TWO INTERNAL CHILDREN

- To perform operation \(\text{erase}(k) \), we search for key \(k \)
 - Assume key \(k \) is in the tree, and let \(v \) be the node storing \(k \)
- If both children of \(v \) are internal:
 - We find the internal node \(w \) that follows \(v \) in an inorder traversal
 - We copy \(w.\text{key}() \) into node \(v \)
 - We remove node \(w \) and its left child \(z \) (which must be a leaf) by means of operation \(\text{removeAboveExternal}(z) \)
- Example: remove 3
EXERCISE
BINARY SEARCH TREES

- Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
 - 30, 40, 24, 58, 48, 26, 11, 13
- Now, remove the item with key 30. Draw the resulting tree
- Now remove the item with key 48. Draw the resulting tree.
PERFORMANCE

• Consider an ordered map with n items implemented by means of a binary search tree of height h
 • Space used is $O(n)$
 • Methods $\text{find}(k), \text{floorEntry}(k), \text{ceilingEntry}(k)$, $\text{put}(k, v)$, and $\text{erase}(k)$ take $O(h)$ time
• The height h is $O(n)$ in the worst case and $O(\log n)$ in the best case