CHAPTER 11
SETS, AND SELECTION

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM JORY DENNY AND MUKULIKA GHOSH
SETS
A set is an ordered data structure similar to an ordered map, except only elements are stored (and yes elements must be unique)

We represent a set by the sorted sequence of its elements

By specializing the auxiliary methods the generic merge algorithm can be used to perform basic set operations:

- **Union** - $A \cup B$ – Return all elements which appear in A or B (unique only)
- **Intersection** - $A \cap B$ – Return only elements which appear in both A and B
- **Subtraction** - $A \setminus B$ – Return elements in A which are not in B

The running time of an operation on sets A and B should be at most $O(n_A + n_B)$

Set union:
- if $a < b$ \[S.\text{insertFront}(a) \]
- if $b < a$ \[S.\text{insertFront}(b) \]
- else $a = b$ \[S.\text{insertFront}(a) \]

Set intersection:
- if $a < b$ \{do nothing\}
- if $b < a$ \{do nothing\}
- else $a = b$ \[S.\text{insertBack}(a) \]
GENERIC MERGING

- Generalized merge of two sorted sets A and B
- Auxiliary methods (generic functions)
 - $a\text{lsLess}(a, S)$
 - $b\text{lssLess}(b, S)$
 - $b\text{othAreEqual}(a, b, S)$
- Runs in $O(n_A + n_B)$ time provided the auxiliary methods run in $O(1)$ time

Algorithm genericMerge (A, B)

Input: Sets A, B (implemented as sequences)

Output: Set S

1. $S \leftarrow \emptyset$
2. while $\neg A.\text{empty()} \land \neg B.\text{empty()}$ do
3. $a \leftarrow A.\text{front()}$; $b \leftarrow B.\text{front()}$
4. if $a < b$
5. $a\text{lsLess}(a, S)$ //generic action
6. $A.\text{eraseFront()}$
7. else if $b < a$
8. $b\text{lssLess}(b, S)$ //generic action
9. $B.\text{eraseFront()}$
10. else // $a = b$
11. $b\text{othAreEqual}(a, b, S)$ //generic action
12. $A.\text{eraseFront()}$; $B.\text{eraseFront()}$
13. while $\neg A.\text{empty()}$ do
14. $a\text{lsLess}(A.\text{front()}, S)$; $A.\text{eraseFront()}$
15. while $\neg B.\text{empty()}$ do
16. $b\text{lssLess}(B.\text{front()}, S)$; $B.\text{eraseFront()}$
17. $\text{return } S$
Any of the set operations can be implemented using a generic merge.

For example:
- For intersection: only copy elements that are duplicated in both lists.
- For union: copy every element from both lists except for the duplicates.
- All methods run in linear time.
Can use search trees such that the key is equivalent to the element to implement a set, allows fast ordering of data
SELECTION
THE SELECTION PROBLEM

- Given an integer k and n elements $\{x_1, x_2, \ldots, x_n\}$, taken from a total order, find the k-th smallest element in this set.
 - Also called order statistics, the ith order statistic is the ith smallest element
 - Minimum - $k = 1$ - 1st order statistic
 - Maximum - $k = n$ - nth order statistic
 - Median - $k = \left\lfloor \frac{n}{2} \right\rfloor$
 - etc
The Selection Problem

- Naïve solution - SORT!
- We can sort the set in $O(n \log n)$ time and then index the k-th element.

\[
\begin{array}{cccccc}
7 & 4 & 9 & 6 & 2 & \checkmark \\
2 & 4 & 6 & 7 & 9 & \text{k=3}
\end{array}
\]

- Can we solve the selection problem faster?
THE MINIMUM (OR MAXIMUM)

Algorithm `minimum(A)`

Input: Array A

Output: minimum element in A

1. $m \leftarrow A[1]$
2. for $i \leftarrow 2 \ldots n$ do
3. \hspace{1em} $m \leftarrow \min(m, A[i])$
4. return m

- Running Time
 - $O(n)$
- Is this the best possible?
QUICK-SELECT

- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
 - **Prune:** pick a random element x (called pivot) and partition S into
 - L elements $< x$
 - E elements $= x$
 - G elements $> x$
 - **Search:** depending on k, either answer is in E, or we need to recur on either L or G
- Note: Partition same as Quicksort
An execution of quick-select can be visualized by a recursion path

- Each node represents a recursive call of quick-select, and stores k and the remaining sequence

- $k = 5, S = (7, 4, 9, 3, 2, 6, 5, 1, 8)$
- $k = 2, S = (7, 4, 9, 6, 5, 8)$
- $k = 2, S = (7, 4, 6, 5)$
- $k = 1, S = (7, 6, 5)$
- 5
- Best Case - even splits (n/2 and n/2)
- Worst Case - bad splits (1 and n-1)

Derive and solve the recurrence relation corresponding to the best case performance of randomized quick-select.

Derive and solve the recurrence relation corresponding to the worst case performance of randomized quick-select.
EXPECTED RUNNING TIME

- Consider a recursive call of quick-select on a sequence of size s
 - Good call: the size of L and G is at most $\frac{3s}{4}$
 - Bad call: the size of L and G is greater than $\frac{3s}{4}$

- A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:
EXPECTED RUNNING TIME

- Probabilistic Fact #1: The expected number of coin tosses required in order to get one head is two.
- Probabilistic Fact #2: Expectation is a linear function:
 - $E(X + Y) = E(X) + E(Y)$
 - $E(cX) = cE(X)$
- Let $T(n)$ denote the expected running time of quick-select.
- By Fact #2, $T(n) < T\left(\frac{3n}{4}\right) + bn * (expected \# \ of \ calls \ before \ a \ good \ call)$
- By Fact #1, $T(n) < T\left(\frac{3n}{4}\right) + 2bn$
- That is, $T(n)$ is a geometric series: $T(n) < 2bn + 2b \left(\frac{3}{4}\right)n + 2b \left(\frac{3}{4}\right)^2 n + 2b \left(\frac{3}{4}\right)^3 n + \cdots$
- So $T(n)$ is $O(n)$.
- We can solve the selection problem in $O(n)$ expected time.
We can do selection in $O(n)$ worst-case time.

Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:

- Divide S into $\frac{n}{5}$ sets of 5 each
- Find a median in each set
- Recursively find the median of the “baby” medians.

See Exercise C-11.22 for details of analysis.