CHAPTER 11
SORTING

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM JORY DENNY AND MUKULIKA GHOSH
Divide-and-conquer is a general algorithm design paradigm:

- **Divide**: divide the input data S into k (disjoint) subsets $S_1, S_2, ..., S_k$
- **Recur**: solve the sub-problems recursively
- **Conquer**: combine the solutions for $S_1, S_2, ..., S_k$ into a solution for S

The base case for the recursion are sub-problems of constant size.

Analysis can be done using recurrence equations (relations)
When the size of all sub-problems is the same (frequently the case) the recurrence equation representing the algorithm is:

\[T(n) = D(n) + k T \left(\frac{n}{c} \right) + C(n) \]

Where

- \(D(n) \) is the cost of dividing \(S \) into the \(k \) sub-problems \(S_1, S_2, \ldots, S_k \)
- There are \(k \) sub-problems, each of size \(\frac{n}{c} \) that will be solved recursively
- \(C(n) \) is the cost of combining the sub-problem solutions to get the solution for \(S \)
Algorithm – transform multiplication of two n-bit integers I and J into multiplication of $\left(\frac{n}{2}\right)$-bit integers and some additions/shifts

1. Where does recursion happen in this algorithm?
2. Rewrite the step(s) of the algorithm to show this clearly.

Algorithm `multiply(I, J)`

Input: n-bit integers I, J
Output: $I \times J$

1. if $n > 1$
2. Split I and J into high and low order halves: I_h, I_l, J_h, J_l
3. $x_1 \leftarrow I_hJ_h; x_2 \leftarrow I_hJ_l; x_3 \leftarrow I_lJ_h; x_4 \leftarrow I_lJ_l$
4. $Z \leftarrow x_1 \times 2^n + x_2 \times 2^{n/2} + x_3 \times 2^{n/2} + x_4$
5. else
6. $Z \leftarrow I \times J$
7. return Z
Algorithm – transform multiplication of two \(n \)-bit integers \(I \) and \(J \) into multiplication of \(\left(\frac{n}{2} \right) \)-bit integers and some additions/shifts.

Assuming that additions and shifts of \(n \)-bit numbers can be done in \(O(n) \) time, describe a recurrence equation showing the running time of this multiplication algorithm.

Algorithm multiply(\(I, J \))

Input: \(n \)-bit integers \(I, J \)

Output: \(I \times J \)

1. **if** \(n > 1 \)
 2. Split \(I \) and \(J \) into high and low order halves: \(I_h, I_l, J_h, J_l \)
 3. \(x_1 \leftarrow \text{multiply}(I_h, J_h); x_2 \leftarrow \text{multiply}(I_h, J_l); \)
 \(x_3 \leftarrow \text{multiply}(I_l, J_h); x_4 \leftarrow \text{multiply}(I_l, J_l) \)
 4. \(Z \leftarrow x_1 \times 2^n + x_2 \times 2^{\frac{n}{2}} + x_3 \times 2^{\frac{n}{2}} + x_4 \)
5. **else**
 6. \(Z \leftarrow I \times J \)
7. **return** \(Z \)
Algorithm – transform multiplication of two n-bit integers I and J into multiplication of $\left(\frac{n}{2}\right)$-bit integers and some additions/shifts.

The recurrence equation for this algorithm is:
\[T(n) = 4T\left(\frac{n}{2}\right) + O(n) \]

The solution is $O(n^2)$ which is the same as naïve algorithm.

Algorithm multiply(I, J)

Input: n-bit integers I, J

Output: $I \times J$

1. if $n > 1$
2. Split I and J into high and low order halves: I_h, I_l, J_h, J_l
3. $x_1 \leftarrow \text{multiply}(I_h, J_h); x_2 \leftarrow \text{multiply}(I_h, J_l); x_3 \leftarrow \text{multiply}(I_l, J_h); x_4 \leftarrow \text{multiply}(I_l, J_l)$
4. $Z \leftarrow x_1 \times 2^n + x_2 \times 2^{\frac{n}{2}} + x_3 \times 2^{\frac{n}{2}} + x_4$
5. else
6. $Z \leftarrow I \times J$
7. return Z
MERGE SORT
Merge-sort is based on the divide-and-conquer paradigm. It consists of three steps:

- **Divide**: partition input sequence S into two sequences S_1 and S_2 of about $\frac{n}{2}$ elements each
- **Recur**: recursively sort S_1 and S_2
- **Conquer**: merge S_1 and S_2 into a sorted sequence

Algorithm `mergeSort(S, C)`

Input: Sequence S of n elements,
Comparator C

Output: Sequence S sorted according to C

1. if S.size() > 1
2. $(S_1, S_2) \leftarrow$ partition $\left(S, \frac{n}{2} \right)$
3. $S_1 \leftarrow$ `mergeSort(S_1, C)`
4. $S_2 \leftarrow$ `mergeSort(S_2, C)`
5. $S \leftarrow$ merge(S_1, S_2)
6. return S
An execution of merge-sort is depicted by a binary tree
- Each node represents a recursive call of merge-sort and stores
 - Unsorted sequence before the execution and its partition
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

Partition

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

7 2 9 4 2 4 7 9

7 2 2 7 9 4 4 9

7 7 2 2 9 9 4 4

3 8 3 8 6 1 1 6

3 3 8 8 6 6 1 1
EXECUTION EXAMPLE

- Recursive Call, partition

```
7 2 9 4 | 3 8 6 1 | 1 2 3 4 6 7 8 9
```

```
7 2 | 9 4  2 4 7 9

7 2  | 2 7
7 7  | 2 2
```

```
9 4  | 4 9
9 9  | 4 4
3 3  | 8 8
6 6  | 1 1
```
EXECUTION EXAMPLE

- Recursive Call, partition

```
7 | 2 9 4 | 3 8 6 1 | 1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 | 2 4 7 9
```

```
7 | 2 2 7
```

```
9 4 | 4 9
```

```
3 8 6 1 | 1 3 8 6
```

```
6 1 1
```

```
7 7 2 2
```

```
9 9 4 4
```

```
3 3 6 6
```

```
8 8 1 1
```
EXECUTION EXAMPLE

- Recursive Call, base case
EXECUTION EXAMPLE

- Recursive Call, base case

```
  7 2 9 4   3 8 6 1   1 2 3 4 6 7 8 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```

```
  7 2 | 9 4   2 4 7 9
```
EXECUTION EXAMPLE

- Merge
EXECUTION EXAMPLE

- Recursive call, …, base case, merge
EXECUTION EXAMPLE

- Merge
EXECUTION EXAMPLE

- Recursive call, …, merge, merge
EXECUTION EXAMPLE

- Merge

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
</table>

   3  | 8  | 6  | 1  |

   1  | 2  | 3  | 4  | 6  | 7  | 8  | 9  |
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
</table>

   2  | 4  | 7  | 9  |
```

```
<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>6</th>
<th>1</th>
</tr>
</thead>
</table>

   1  | 3  | 8  | 6  |
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>7</th>
</tr>
</thead>
</table>

   2  | 2  |
```

```
<table>
<thead>
<tr>
<th>9</th>
<th>9</th>
</tr>
</thead>
</table>

   4  | 4  |
```

```
<table>
<thead>
<tr>
<th>3</th>
<th>3</th>
</tr>
</thead>
</table>

   8  | 8  |
```

```
<table>
<thead>
<tr>
<th>6</th>
<th>6</th>
</tr>
</thead>
</table>

   1  | 1  |
```
The running time of Merge Sort can be expressed by the recurrence equation:

\[T(n) = 2T\left(\frac{n}{2}\right) + M(n) \]

We need to determine \(M(n) \), the time to merge two sorted sequences each of size \(\frac{n}{2} \).

Algorithm `mergeSort(S, C)`

Input: Sequence \(S \) of \(n \) elements, Comparator \(C \)

Output: Sequence \(S \) sorted according to \(C \)

1. if \(S \).size() > 1
2. \((S_1, S_2) \leftarrow \text{partition}(S, \frac{n}{2})\)
3. \(S_1 \leftarrow \text{mergeSort}(S_1, C)\)
4. \(S_2 \leftarrow \text{mergeSort}(S_2, C)\)
5. \(S \leftarrow \text{merge}(S_1, S_2)\)
6. return \(S \)
Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences \(A \) and \(B \) into a sorted sequence \(S \) containing the union of the elements of \(A \) and \(B \)

- Merging two sorted sequences, each with \(\frac{n}{2} \) elements and implemented by means of a doubly linked list, takes \(O(n) \) time
 - \(M(n) = O(n) \)

Algorithm \(\text{merge}(A,B) \)

Input: Sequences \(A,B \) with \(\frac{n}{2} \) elements each
Output: Sorted sequence of \(A \cup B \)

1. \(S \leftarrow \emptyset \)
2. while \(\neg A.\text{empty}(\) \land \neg B.\text{empty}(\) \)
3. \(\text{if } A.\text{front}(\) < B.\text{front}(\) \)
4. \(S.\text{insertBack}(A.\text{front}(\)); A.\text{eraseFront}(\) \)
5. \(\text{else} \)
6. \(S.\text{insertBack}(B.\text{front}(\)); B.\text{eraseFront}(\) \)
7. while \(\neg A.\text{empty}(\) \)
8. \(S.\text{insertBack}(A.\text{front}(\)); A.\text{eraseFront}(\) \)
9. while \(\neg B.\text{empty}(\) \)
10. \(S.\text{insertBack}(B.\text{front}(\)); B.\text{eraseFront}(\) \)
11. \(\text{return } S \)
Algorithm \texttt{mergeSort}(S, C)

\textbf{Input}: Sequence S of n elements, Comparator C

\textbf{Output}: Sequence S sorted according to C

1. \textbf{if} S.\textit{size}() > 1
2. $(S_1, S_2) \leftarrow \text{partition}\left(S, \frac{n}{2}\right)$
3. $S_1 \leftarrow \text{mergeSort}(S_1, C)$
4. $S_2 \leftarrow \text{mergeSort}(S_2, C)$
5. $S \leftarrow \text{merge}(S_1, S_2)$
6. \textbf{return} S

- So, the running time of Merge Sort can be expressed by the recurrence equation:

 $$T(n) = 2T\left(\frac{n}{2}\right) + M(n)$$

 $$= 2T\left(\frac{n}{2}\right) + O(n)$$

 $$= O(n \log n)$$
The height \(h \) of the merge-sort tree is \(O(\log n) \).
- at each recursive call we divide in half the sequence,
- The work done at each level is \(O(n) \).
- At level \(i \), we partition and merge \(2^i \) sequences of size \(\frac{n}{2^i} \).
- Thus, the total running time of merge-sort is \(O(n \log n) \).

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
<th>Cost for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(\frac{n}{2})</td>
<td>(n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i)</td>
<td>(\frac{n}{2^i})</td>
<td>(n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
\log n \quad 2^\log n = n \quad \frac{n}{2^{\log n}} = 1 \quad n
\]
SUMMARY OF SORTING ALGORITHMS (SO FAR)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td>WC, AC</td>
<td>For small data sets</td>
</tr>
<tr>
<td></td>
<td>$O(n)$</td>
<td>BC</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets</td>
</tr>
</tbody>
</table>
QUICK-SORT
Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide:** pick a random element x (called pivot) and partition S into
 - L - elements less than x
 - E - elements equal x
 - G - elements greater than x
- **Recur:** sort L and G
- **Conquer:** join L, E, and G
We partition an input sequence as follows:

- We remove, in turn, each element y from S and
- We insert y into L, E, or G, depending on the result of the comparison with the pivot x

Algorithm $\text{partition}(S, p)$

Input: Sequence S, position p of the pivot

Output: Subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, respectively

1. $L, E, G \leftarrow \emptyset$
2. $x \leftarrow S.\text{erase}(p)$
3. **while** $\neg S.\text{empty}()$
4. $y \leftarrow S.\text{eraseFront}()$
5. **if** $y < x$
6. $L.\text{insertBack}(y)$
7. **else if** $y = x$
8. $E.\text{insertBack}(y)$
9. **else** // $y > x$
10. $G.\text{insertBack}(y)$
11. **return** L, E, G
An execution of quick-sort is depicted by a binary tree:
- Each node represents a recursive call of quick-sort and stores:
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

- Pivot selection

```
2 4 3 1 1 2 3 4
7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9
```

```
1 1
4 3 3 4
7 9 7 7 9
4 4
9 9
```
EXECUTION EXAMPLE

- Partition, recursive call, pivot selection
EXECUTION EXAMPLE

- Partition, recursive call, base case
EXECUTION EXAMPLE

- Recursive call, …, base case, join

```
2 4 3 1
1 2 3 4
```

```
7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9
```

```
7 9 7 7 9
```

```
4 3 3 4
```

```
4 4
```

```
9 9
```
EXECUTION EXAMPLE

- Recursive call, pivot selection
EXECUTION EXAMPLE

- Partition, ..., recursive call, base case

```
Partition, ..., recursive call, base case

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

2 4 3 1 1 2 3 4

7 9 7 7 7 9

1 1 4 3 3 4

9 9

4 4
```
EXECUTION EXAMPLE

- Join, join

```
7 2 9 4 3 7 6 1
1 2 3 4 6 7 7 9
```

```
2 4 3 1
1 2 3 4
```

```
7 9 7
7 7 9
```

```
1 1
4 3
3 4
```

```
9 9
```

4 4
Quick-sort can be implemented to run in-place

In the partition step, we use replace operations to rearrange the elements of the input sequence such that

- the elements less than the pivot have indices less than h
- the elements equal to the pivot have indices between h and k
- the elements greater than the pivot have indices greater than k

The recursive calls consider

- elements with indices less than h
- elements with indices greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input: Array S, indices l, r

Output: Array S with the elements between l and r sorted

1. if $l \geq r$
2. return S
3. $i \leftarrow \text{rand}() \% (r - l) + l$ //random integer between l and r
4. $x \leftarrow S[i]$
5. $(h, k) \leftarrow \text{inPlacePartition}(x)$
6. inPlaceQuickSort(S, l, $h - 1$)
7. inPlaceQuickSort(S, $k + 1$, r)
8. return S
IN-PLACE PARTITIONING

- Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

\[
\begin{array}{cccccccccccccc}
3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9
\end{array}
\]

(pivot $= 6$)

- Repeat until j and k cross:
 - Scan j to the right until finding an element $\geq x$.
 - Scan k to the left until finding an element $< x$.
 - Swap elements at indices j and k
ANALYSIS OF QUICK SORT USING RECURRANCE RELATIONS

- Assumption: random pivot expected to give equal sized sub-lists
- The running time of Quick Sort can be expressed as:
 \[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]
- \(P(n) \) - time to run partition () on input of size \(n \)

Algorithm quickSort\((S, l, r) \)

Input: Sequence \(S \), indices \(l, r \)

Output: Sequence \(S \) with the elements between \(l \) and \(r \) sorted

1. if \(l \geq r \)
2. return \(S \)
3. \(i \leftarrow \text{rand(} \frac{r-l}{2} \text{)} + l \)
 //random integer between \(l \) and \(r \)
4. \(x \leftarrow S. \text{at}(i) \)
5. \((h, k) \leftarrow \text{partition}(x)\)
6. quickSort\((S, l, h − 1) \)
7. quickSort\((S, k + 1, r) \)
8. return \(S \)
ANALYSIS OF PARTITION

- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time.
- Thus, the partition step of quick-sort takes $O(n)$ time.

Algorithm `partition(S, p)`

Input: Sequence S, position p of the pivot

Output: Subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, respectively

1. $L, E, G \leftarrow \emptyset$
2. $x \leftarrow S$.erase(p)
3. while $\neg S$.empty()
4. $y \leftarrow S$.eraseFront()
5. if $y < x$
6. L.insertBack(y)
7. else if $y = x$
8. E.insertBack(y)
9. else $// y > x$
10. G.insertBack(y)
11. return L, E, G
SO, THE EXPECTED COMPLEXITY OF QUICK SORT

- Assumption: random pivot expected to give equal sized sub-lists
- The running time of Quick Sort can be expressed as:
 \[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]
 \[= 2T\left(\frac{n}{2}\right) + O(n) \]
 \[= O(n \log n) \]

Algorithm quickSort(S, l, r)

Input: Sequence S, indices l, r

Output: Sequence S with the elements between l and r sorted

1. if \(l \geq r \)
2. return S
3. \(i \leftarrow \text{rand}(\) \% (r - l) + l \)
 //random integer between l and r
4. \(x \leftarrow \text{S.at}(i) \)
5. \((h, k) \leftarrow \text{partition}(x) \)
6. quickSort(S, l, h - 1)
7. quickSort(S, k + 1, r)
8. return S
The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.

- One of L and G has size $n-1$ and the other has size 0.

The running time is proportional to:

$$n + (n-1) + \cdots + 2 + 1 = O(n^2)$$

Alternatively, using recurrence equations:

$$T(n) = T(n-1) + O(n) = O(n^2)$$
Consider a recursive call of quick-sort on a sequence of size s:

- Good call: the sizes of L and G are each less than $\frac{3s}{4}$.
- Bad call: one of L and G has size greater than $\frac{3s}{4}$.

A call is good with probability $1/2$:

- $1/2$ of the possible pivots cause good calls.
EXPECTED RUNNING TIME

- **Probabilistic Fact:** The expected number of coin tosses required in order to get k heads is $2k$ (e.g., it is expected to take 2 tosses to get heads)

- For a node of depth i, we expect
 - $\frac{i}{2}$ ancestors are good calls
 - The size of the input sequence for the current call is at most $\left(\frac{3}{4}\right)^{\frac{i}{2}} n$

- Therefore, we have
 - For a node of depth $2 \log_2 \frac{n}{3}$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$

- The amount or work done at the nodes of the same depth is $O(n)$

- Thus, the expected running time of quick-sort is $O(n \log n)$
SUMMARY OF SORTING ALGORITHMS (SO FAR)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC, $O(n)$ BC</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. $O(n \log n)$ AC, BC $O(n^2)$ WC</td>
<td>Fastest, randomized, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets</td>
</tr>
</tbody>
</table>
SORTING LOWER BOUND
Many sorting algorithms are comparison based.
- They sort by making comparisons between pairs of objects.
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, $x_1, x_2, ..., x_n$.

Diagram:

- **Is $x_i < x_j$?**
 - **yes**
 - **no**
Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree.
The height of the decision tree is a lower bound on the running time.

Every input permutation must lead to a separate leaf output.

If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong.

Since there are $n! = 1 \times 2 \times \cdots \times n$ leaves, the height is at least $\log(n!)$.
Any comparison-based sorting algorithm takes at least $\log(n!)$ time

$$\log(n!) \geq \log \left(\frac{n}{2} \right)^{\frac{n}{2}} = \frac{n}{2} \log \frac{n}{2}$$

That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time.
BUCKET-SORT AND RADIX-SORT

CAN WE SORT IN LINEAR TIME?
Let be S be a sequence of n (key, element) items with keys in the range $[0, N - 1]$.

Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets):

- **Phase 1:** Empty sequence S by moving each entry into its bucket $B[k]$.
- **Phase 2:** for $i \leftarrow 0 \ldots N - 1$, move the items of bucket $B[i]$ to the end of sequence S.

Analysis:
- Phase 1 takes $O(n)$ time.
- Phase 2 takes $O(n + N)$ time.
- Bucket-sort takes $O(n + N)$ time.

Algorithm bucketSort(S, N)

Input: Sequence S of entries with integer keys in the range $[0, N - 1]$.

Output: Sequence S sorted in non-decreasing order of the keys.

1. $B \leftarrow$ array of N empty sequences.
2. **for each** entry $e \in S$ do
 3. $k \leftarrow e$.key()
 4. remove e from S and insert it at the end of bucket $B[k]$.
5. **for** $i \leftarrow 0 \ldots N - 1$ do
 6. **for each** entry $e \in B[i]$ do
 7. remove e from bucket $B[i]$ and insert it at the end of S.

Properties

- Key-type
 - The keys are used as indices into an array and cannot be arbitrary objects
 - No external comparator
- Stable sorting
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

- Integer keys in the range \([a, b]\]
 - Put entry \(e\) into bucket \(B[k - a]\)
- String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 - Sort \(D\) and compute the index \(i(k)\) of each string \(k\) of \(D\) in the sorted sequence
 - Put item \(e\) into bucket \(B[i(k)]\)
Key range [37, 46] – map to buckets [0, 9]

Phase 1

```
45, d  37, c  40, a  45, g  40, b  46, e
```

Phase 2

```
37, c  40, a  40, b  45, d  45, g  46, e
```
Given a list of tuples:
(7,4,6) (5,1,5) (2,4,6) (2,1,4) (5,1,6) (3,2,4)

After sorting, the list is in lexicographical order:
(2,1,4) (2,4,6) (3,2,4) (5,1,5) (5,1,6) (7,4,6)
A d-tuple is a sequence of d keys (k_1, k_2, \ldots, k_d), where key k_i is said to be the i-th dimension of the tuple.

- Example - the Cartesian coordinates of a point in space is a 3-tuple (x, y, z)

The lexicographic order of two d-tuples is recursively defined as follows:

$(x_1, x_2, \ldots, x_d) < (y_1, y_2, \ldots, y_d) \iff x_1 < y_1 \lor (x_1 = y_1 \land (x_2, \ldots, x_d) < (y_2, \ldots, y_d))$

i.e., the tuples are compared by the first dimension, then by the second dimension, etc.
Given a list of 2-tuples, we can order the tuples lexicographically by applying a stable sorting algorithm two times:
(3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

Possible ways of doing it:
- Sort first by 1st element of tuple and then by 2nd element of tuple
- Sort first by 2nd element of tuple and then by 1st element of tuple

Show the result of sorting the list using both options
EXERCISE
LEXICOGRAPHIC ORDER

- (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

- Using a stable sort,
 - Sort first by 1st element of tuple and then by 2nd element of tuple
 - Sort first by 2nd element of tuple and then by 1st element of tuple

- Option 1:
 - 1st sort: (1,5) (1,2) (1,7) (2,5) (2,3) (2,2) (3,3) (3,2)
 - 2nd sort: (1,2) (2,2) (3,2) (2,3) (3,3) (1,5) (2,5) (1,7) - WRONG

- Option 2:
 - 1st sort: (1,2) (3,2) (2,2) (3,3) (2,3) (1,5) (2,5) (1,7)
 - 2nd sort: (1,2) (1,5) (1,7) (2,2) (2,3) (2,5) (3,2) (3,3) - CORRECT
LEXICOGRAPHIC-SORT

- Let C_i be the comparator that compares two tuples by their i-th dimension
- Let $\text{stableSort}(S, C)$ be a stable sorting algorithm that uses comparator C
- Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension
- Lexicographic-sort runs in $O(dT(n))$ time, where $T(n)$ is the running time of stableSort

Algorithm $\text{lexicographicSort}(S)$

Input: Sequence S of d-tuples

Output: Sequence S sorted in lexicographic order

1. for $i \leftarrow d ... 1$ do
2. $\text{stableSort}(S, C_i)$
Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension.

Radix-sort is applicable to tuples where the keys in each dimension \(i \) are integers in the range \([0, N - 1]\).

Radix-sort runs in time \(O(d(n + N)) \)

Algorithm \texttt{radixSort}(\(S, N \))

Input: Sequence \(S \) of \(d \)-tuples such that
\[
(0, \ldots, 0) \leq (x_1, \ldots, x_d) \quad \text{and} \quad (x_1, \ldots, x_d) \leq (N - 1, \ldots, N - 1)
\]
for each tuple \((x_1, \ldots, x_d)\) in \(S \)

Output: Sequence \(S \) sorted in lexicographic order

1. for \(i \leftarrow d \ldots 1 \) do
2. set the key \(k \) of each entry \((k, (x_1, \ldots, x_d))\) of \(S \) to \(i \)th dimension \(x_i \)
3. \texttt{bucketSort}(\(S, N \))
EXAMPLE
RADIX-SORT FOR BINARY NUMBERS

- Sorting a sequence of 4-bit integers

 - \(d = 4, N = 2 \) so \(O(d(n + N)) = O(4(n + 2)) = O(n) \)
SUMMARY OF SORTING ALGORITHMS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ BC</td>
<td>For small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. $O(n \log n)$ AC, BC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$O(n^2)$ WC</td>
<td>Fastest, randomized, in-place</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets</td>
</tr>
<tr>
<td>Radix Sort</td>
<td>$O(d(n + N)), d #\text{digits,} N \text{ range of digit values}$</td>
<td>Fastest, stable only for integers</td>
</tr>
</tbody>
</table>