Acknowledgement: Parts of these course notes are based on notes from courses given by Jennifer Welch at Texas A&M University.
Mathematical Foundations

The initial part of this course focuses on giving us the mathematical foundations we need to use in the rest of the course. These are covered by Chapters 3-5 in the text:

- **Chap. 3, Growth of Functions** (Asymptotic Analysis)
 - we will review in class (Math 302 material)

- **Chap. 4, Recurrences**
 - we will review in class (Math 302 material)

- **Chap. 5, Probabilistic Analysis and Randomized Algorithms**
 - this should also be largely review, but we will cover parts of it as they are needed.
Asymptotic Analysis

Main Idea: We are interested in the work (running time) \textit{in the limit} as the input size grows to infinity

- focus on calculating running time in terms of its rate of growth with increasing problem size
 - disregard multiplicative constants
 - identify leading terms (of highest order)

Example: an algorithm with running time of order n^2 will “eventually” (i.e., for sufficiently large n) run slower than one with running time of order n, which in turn will eventually run slower than one with running time of order $\log n$.

- asymptotic analysis in terms of “Big Oh”, “Theta”, and “Omega” are the tools we will use to make these notions precise

Note: Our conclusions will only be valid “in the limit” or “asymptotically”. That is, they may not hold true for small values of n. (You will explore this issue in the programming assignments.)
“Big Oh” – Upper Bounding Running Time

Definition: \(g(n) \in O(f(n)) \) if \(\exists c > 0 \) and \(n_0 > 0 \) such that

\[
g(n) \leq cf(n)
\]

for all \(n \geq n_0 \) (often written as \(g(n) = O(f(n)) \)).

Intuition:

- \(g(n) \in O(f(n)) \) means \(g(n) \) is “less than or equal to” \(f(n) \) when we ignore small values of \(n \) and constant multiples.
- \(g(n) \) is *eventually* trapped below *some* constant multiple of \(f(n) \)
- *some* constant multiple of \(f(n) \) is an *upper bound* for \(g(n) \) (for large enough \(n \))

Useful Way to Show “Big Oh” Relationships:

\[
g(n) \in O(f(n)) \quad \text{iff} \quad \lim_{n \to \infty} \frac{g(n)}{f(n)} = c
\]

for some constant \(c \geq 0 \).

... and L’Hopital’s Rule is useful for doing this...

If \(\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = \infty \), then (assuming \(f'(n) \) and \(g'(n) \) exist),

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}
\]
Examples: “Big Oh”

The complexities for *insertion sort* are:

- **worst-case:** \(w(n) = \frac{1}{2}n^2 - \frac{1}{2}n \)
- **average-case:** \(a(n) = \frac{1}{4}n^2 + \frac{3}{4}n - 1 - \ln(n + 1) + \ln 2 \)
- **best-case:** \(b(n) = n - 1 \)

1. is \(b(n) = O(n) \)? (\(f(n) = n \), \(g(n) = b(n) \))

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n - 1}{n} = \lim_{n \to \infty} 1 - \frac{1}{n} = 1
\]

so the answer is yes!

2. is \(w(n) = O(n) \)?

3. is \(w(n) = O(n^2) \)?

4. is \(a(n) = O(n^2) \)?
“Omega” – Lower Bounding Running Time

Definition: $g(n) \in \Omega(f(n))$ if $\exists c > 0$ and $n_0 > 0$ such that

$$g(n) \geq cf(n)$$

for all $n \geq n_0$ (often written as $g(n) = \Omega(f(n))$).

Intuition:
- $g(n) \in \Omega(f(n))$ means $g(n)$ is “greater than or equal to” $f(n)$ when we ignore small values of n and constant multiples.
- $g(n)$ is *eventually* trapped above *some* constant multiple of $f(n)$
- *Some* constant multiple of $f(n)$ is a *lower bound* for $g(n)$ (for large enough n)

Useful Way to Show “Omega” Relationships:

$$g(n) \in \Omega(f(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = c$$

for some constant $c \geq 0$.

... and again, L’Hopital’s Rule is useful for doing this.
Examples: “Omega”

The complexities for *insertion sort* are:

- **worst-case:** \(w(n) = \frac{1}{2}n^2 - \frac{1}{2}n \)
- **average-case:** \(a(n) = \frac{1}{4}n^2 + \frac{3}{4}n - 1 - \ln(n + 1) + \ln 2 \)
- **best-case:** \(b(n) = n - 1 \)

1. is \(b(n) = \Omega(n) \)? \((f(n) = n, g(n) = b(n))\)

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n}{n - 1} = \lim_{n \to \infty} 1 + \frac{1}{n - 1} = 1
 \]

 so the answer is yes!

2. is \(w(n) = \Omega(n) \)?

3. is \(w(n) = \Omega(n^2) \)?

4. is \(a(n) = \Omega(n^2) \)?
“Theta” – Tightly Bounding Running Time

Definition: $g(n) \in \Theta(f(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that

$$c_1 f(n) \leq g(n) \leq c_2 f(n)$$

for all $n \geq n_0$ (often written as $g(n) = \Theta(f(n))$).

Intuition:

- $g(n) \in \Theta(f(n))$ means $g(n)$ is “equal to” $f(n)$ when we ignore small values of n and constant multiples.
- $g(n)$ is *eventually* trapped between *two* constant multiples of $f(n)$

Useful Way to Show “Theta” Relationships:

- The easiest way is to show both a “Big Oh” and an “Omega” relationship
- Can also use limits as before:

$$g(n) \in \Theta(f(n)) \iff \lim_{n \to \infty} \frac{g(n)}{f(n)} = c$$

for some constant $c > 0$ (note strictly greater than zero).
Examples: “Theta”

The complexities for *insertion sort* are:

- **worst-case:** \(w(n) = \frac{1}{2}n^2 - \frac{1}{2}n \)
- **average-case:** \(a(n) = \frac{1}{4}n^2 + \frac{3}{4}n - 1 - \ln(n + 1) + \ln 2 \)
- **best-case:** \(b(n) = n - 1 \)

1. is \(b(n) = \Theta(n) \)? (\(f(n) = n \), \(g(n) = b(n) \))
We have already seen that \(b(n) = O(n) \) and \(b(n) = \Omega(n) \), so the answer is yes!

We can also do it from scratch:

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n - 1}{n} = \lim_{n \to \infty} 1 - \frac{1}{n} = 1
\]
since \(1 > 0 \), the answer is yes!

2. is \(w(n) = \Theta(n) \)?

3. is \(w(n) = \Theta(n^2) \)?

4. is \(a(n) = \Theta(n^2) \)?
Useful Properties for Asymptotic Analysis

We will use asymptotic analysis to make statements like:

- “An algorithm has worst-case running time $O(g(n))$” – which means there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most $cg(n)$ time.

- “An algorithm has worst-case running time $\Omega(g(n))$” – which means there is a constant c s.t. for every n big enough, at least one execution on an input of size n takes at least $cg(n)$ time.

Some useful properties:

- If $f(n) = O(g(n))$ and $g(n) = O(h(n))$, then $f(n) = O(h(n))$ (transitive).

 intuition: if $f(n) \leq g(n)$ and $g(n) \leq h(n)$, then $f(n) \leq h(n)$

- also holds for Ω and Θ

- $f(n) = O(g(n))$ iff $g(n) = \Omega(f(n))$

 intuition: $f(n) \leq g(n)$ iff $g(n) \geq f(n)$,

- $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$

 intuition: $f(n) = g(n)$ iff $g(n) = f(n)$,

- $O(f(n) + g(n)) = O(\max(f(n), g(n)))$, e.g. $O(n^3 + n) = O(n^3)$

 $\Omega(f(n) + g(n)) = \Omega(\max(f(n), g(n)))$

 $\Theta(f(n) + g(n)) = \Theta(\max(f(n), g(n)))$
Little Oh and Little Omega

‘Little Oh’ and ‘Little Omega’ are used to denote strict upperbounds and lowerbounds, respectively (O and Ω bounds are not necessarily strict)

Definition: $g(n) \in o(f(n))$ if for every $c > 0$, there exists some $n_0 > 0$ such that for all $n \geq n_0 \quad g(n) < cf(n)$.

Intuition:
- $g(n) \in o(f(n))$ means $g(n)$ is “less than” any constant multiple of $f(n)$ when we ignore small values of n
- $g(n)$ is *eventually* trapped below *any* constant multiple of $f(n)$

Definition: $g(n) \in \omega(f(n))$ if for every $c > 0$, there exists some $n_0 > 0$ such that for all $n \geq n_0 \quad g(n) > cf(n)$.

Intuition:
- $g(n) \in \omega(f(n))$ means $g(n)$ is “greater than” any constant multiple of $f(n)$ when we ignore small values of n
- $g(n)$ is *eventually* trapped above *any* constant multiple of $f(n)$

Showing “Little Oh and Little Omega” Relationships:

$g(n) \in o(f(n)) \quad$ iff $\quad \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

$g(n) \in \omega(f(n)) \quad$ iff $\quad \lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$
Divide-and-Conquer Algorithms

The divide-and-conquer paradigm (Ch 2)

- **divide** the problem into a number of subproblems
- **conquer** the subproblems (solve them)
- **combine** the subproblem solutions to get the solution to the original problem

Note: often the “conquer” step is done **recursively**

Recursive algorithm: to solve a given problem, they call themselves recursively one or more times to deal with closely related subproblems.
- usually the subproblems are smaller in size than the ‘parent’ problem
- divide-and-conquer algorithms are often recursive

Example: Merge Sort

- **divide** the n-element sequence to be sorted into two $\frac{n}{2}$-element sequences
- **conquer:** sort the subproblems, recursively using merge sort
- **combine:** merge the resulting two sorted $\frac{n}{2}$-element sequences
Analyzing Divide-and-Conquer Algorithms

When an algorithm contains a recursive call to itself, its running time can often be described by a **recurrence equation** which describes the overall running time on a problem of size \(n \) in terms of the running time on smaller inputs.

For divide-and-conquer algorithms, we get recurrences that look like:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n \leq c \\
aT(n/b) + D(n) + C(n) & \text{otherwise}
\end{cases}
\]

where

- \(a \) = the number of subproblems we break the problem into
- \(n/b \) = the size of the subproblems (in terms of \(n \))
- \(D(n) \) is the time to divide the problem of size \(n \) into the subproblems
- \(C(n) \) is the time to combine the subproblem solutions to get the answer for the problem of size \(n \)

Example: Merge Sort

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n \leq c \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]

- \(a = 2 \) (two subproblems)
- \(n/b = n/2 \) (each subproblem has size approx \(n/2 \))
- \(D(n) = \Theta(1) \) (just compute midpoint of array)
- \(C(n) = \Theta(n) \) (merging can be done by scanning sorted subarrays)
Solving Recurrences

There are 3 general methods for solving recurrences (Ch. 4)

1. **Iteration: Convert to Summation:** convert the recurrence into a summation (by expanding some terms) and then bound the summation

2. **Substitution: Guess & Verify:** guess a solution and verify it is correct with an inductive proof

3. **Apply “Master Theorem”:** if the recurrence has the form

 \[T(n) = aT(n/b) + f(n) \]

 then there is a formula that can (often) be applied.

Simplifications: there are two simplifications we apply that won’t affect asymptotic analysis

- ignore floors and ceilings (justification in text)
- assume base cases are constant, i.e., \(T(n) = \Theta(1) \) for \(n \) small enough
Solving Recurrences: Iteration (convert to summation)

Example: \(T(n) = 4T\left(\frac{n}{2}\right) + n \)

\[
T(n) = 4T\left(\frac{n}{2}\right) + n \\
= 4\left(\frac{n}{2} + 4T\left(\frac{n}{4}\right)\right) + n \\
= 16T\left(\frac{n}{4}\right) + 2n + n \\
= 16\left(\frac{n}{4} + 4T\left(\frac{n}{8}\right)\right) + 2n + n \\
= 64T\left(\frac{n}{8}\right) + 4n + 2n + n \\
= 4^\log n T(1) + \ldots + 4n + 2n + n \\
= c4^\log n + n \sum_{k=0}^{\log n-1} 2^k \\
= cn^\log 4 + n \left(\frac{2^{\log n - 1}}{2 - 1}\right) \\
= cn^2 + n(n^{\log 2} - 1) \\
= cn^2 + n(n - 1) \\
= cn^2 + n^2 - n \\
= \Theta(n^2)
\]

Intuitive Help: Can represent this as a recursion tree and identify computation with each node/level in the tree.

- root represents computation \((D(n) + C(n))\) at top level of recursion
- node at level \(i\) represents subproblem at level \(i\) in the recursion
- height of tree is number of levels in the recursion
- \(T(n) = \text{sum of all nodes in the tree} \)
Solving Recurrences: Substitution (guess and verify)

This method involves

- guessing form of solution
- use mathematical induction to find the constants and verify solution
- use to find an upper or a lower bound (do both to obtain a tight bound)

Example: $T(n) = 4T(n/2) + n$ (upper bound)

guess $T(n) = O(n^3)$ and try to show $T(n) \leq cn^3$ for some $c > 0$ (we’ll have to find c)

basis?

assume $T(k) \leq ck^3$ for $k < n$, and prove $T(n) \leq cn^3$

$$
T(n) = 4T(n/2) + n \\
\leq 4(c(n/2)^3) + n \quad /\text{by inductive hypothesis}/ \\
= \frac{c}{2}n^3 + n \\
= cn^3 - (\frac{c}{2}n^3 - n) \\
\leq cn^3
$$

where the last step holds if $c \geq 2$ and $n \geq 1$.

We find values of c and n_0 by determining when $\frac{c}{2}n^3 - n \geq 0$

Useful Tricks: are in text (e.g., subtract lower order term, change of variables)
Practice: Substitution (guess and verify)

Problem 1: Give an upper bound for \(T(n) = 2T(n/2) + n \)

guess \(T(n) = O(n) \) and try to show \(T(n) \leq cn \) for some \(c > 0 \) (you have to find \(c \))

basis?

assume \(T(k) \leq ck \) for \(k < n \), and prove \(T(n) \leq cn \)

\[
T(n) = 2T(n/2) + n \\
\leq 2(cn^2) + n \quad \text{/**by inductive hypothesis**/} \\
= cn + n \\
= O(n) \quad \text{/**WRONG!**/}
\]

Question: What is wrong with the above proof?

Problem 2: Show \(T(n) = 2T(n/2) + n \) is \(\Omega(n \log n) \) using the substitution method.
Solving Recurrences: The Master Method

The master method provides a ‘cookbook’ method for solving recurrences of a certain form.

Master Theorem: Let \(a \geq 1 \) and \(b > 1 \) be constants, let \(f(n) \) be a function, and let \(T(n) \) be defined on nonnegative integers as:

\[
T(n) = aT\left(\frac{n}{b}\right) + f(n),
\]

Then, \(T(n) \) can be bounded asymptotically as follows:

1. \(T(n) = \Theta(n^{\log_b a}) \) \quad if \(f(n) = O(n^{\log_b a-\epsilon}) \) for some constant \(\epsilon > 0 \)
2. \(T(n) = \Theta(n^{\log_b a} \log n) \) \quad if \(f(n) = \Theta(n^{\log_b a}) \)
3. \(T(n) = \Theta(f(n)) \) \quad if \(f(n) = \Omega(n^{\log_b a+\epsilon}) \) for some constant \(\epsilon > 0 \)
 and if \(af\left(\frac{n}{b}\right) \leq cf(n) \) for some constant \(c < 1 \)
 and all sufficiently large \(n \).

Intuition: compare \(f(n) \) with \(\Theta(n^{\log_b a}) \)

- case 1: \(f(n) \) is **polynomially** smaller than \(\Theta(n^{\log_b a}) \)
- case 2: \(f(n) \) is **asymptotically** equal to \(\Theta(n^{\log_b a}) \)
- case 3: \(f(n) \) is **polynomially** larger than \(\Theta(n^{\log_b a}) \)

What is \(\log_b a \)? The number of times we divide \(a \) by \(b \) to reach \(O(1) \).
Solving Recurrences: Master Method

Example: $T(n) = 9T(n^\frac{1}{3}) + n$
- $a = 9$, $b = 3$, $f(n) = n$, $n^{\log_b a} = n^{\log_3 9} = n^2$
- compare $f(n) = n$ with $n^{\log_b a} = n^2$
 - $n = O(n^{2-\varepsilon})$ (f(n) is polynomially smaller than $n^{\log_b a}$)
- case 1 applies: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$

Example: $T(n) = T(\frac{2}{3}n) + 1$
- $a = 1$, $b = \frac{3}{2}$, $f(n) = 1$, $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$
- compare $f(n) = 1$ with $n^{\log_b a} = 1$
 - $1 = \Theta(1)$ (f(n) is asymptotically equal to $n^{\log_b a}$)
- case 2 applies: $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(\log n)$

Example: $T(n) = 3T(n^{\frac{1}{4}}) + n \log n$
- $a = 3$, $b = 4$, $f(n) = n \log n$, $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$
- compare $f(n) = n \log n$ with $n^{\log_b a} = n^{0.793}$
 - $n \log n = \Omega(n^{0.793+\varepsilon})$ (f(n) is polynomially larger than $n^{\log_b a}$)
- case 3 **might** apply: need to check ‘regularity’ of f(n)
 - find $c < 1$ s.t. $a f(n^{\frac{1}{4}}) \leq c f(n)$ for large enough n
 - i.e., $3n^{\frac{3}{4}} \log \frac{n}{4} \leq cn \log n$ which is true for $c = \frac{3}{4}$
- case 3 applies: $T(n) = \Theta(f(n)) = \Theta(n \log n)$

Problem 1. $T(n) = 4T(n^{\frac{1}{2}}) + n^2$

Problem 2. $T(n) = 4T(n^{\frac{1}{2}}) + \frac{n^2}{\log n}$