LINE SEGMENT INTERSECTION Ch. 2

input: set $S = \{s_1, s_2, \ldots, s_n\}$ of n segments in plane
output: set I of intersection pts among segments in S,
(with segments containing each intersection point)

\[(\binom{n}{2}) = \Theta(n^2) \text{ (in worst-case)} \]

example: How many intersections possible?

Algorithm: Brute Force Intersect (S)

\[
\text{for all pairs } (s_i, s_j) \in S \times S: \text{ } i \neq j
\text{ test if } s_i \text{ intersects } s_j
\]

complexity $\Theta(n^2) \leq \text{worst-case optimal (have to report all intersections)}$

However... there may be many fewer intersections...
Can we spend less time (depending on $|I|$)?

We'd like an algorithm whose running time depends on
n - # input segments
K - # intersections
K - size of the output
we call such algorithms output-sensitive

What would be best time?
$O(n + K)$?
Actually a lower bound of $\Omega(n \log n + k)$ is known.
Goal: An output-sensitive algorithm that avoids testing pairs of segments for intersection if they are "far apart"

Idea y-interval test for $s_i + s_j$
Project segments onto y-axis
0 if $s_i + s_j$ intersect
then so do their y-intervals (s_i, s_j)
1 if the y-intervals of $s_i + s_j$ don't intersect
then neither do $s_i + s_j$ (s_i, s_j)
*3 if the y-intervals of $s_i + s_j$ do intersect
then maybe $s_i + s_j$ intersect (s_i, s_j)

so we may still test extra, but better than before
1. let l be horizontal line above all segments
2. sweep l down over segments
 - as sweep keep track of all segments intersecting it

Plane Sweep Algorithm
• l is sweep line
• status T of sweep line is set of segments intersecting it
• points where status changes are events

in our case... * in general for plane sweep algorithms

At each event point (segment endpoint for now)
• update status of sweep line (add/remove segments from T)
• perform some intersection tests
two types of events
(i) lower endpoint of segment S_i
 * remove S_i from T
(ii) upper endpoint of segment S_i
 * add S_i to T
 * test S_i for intersection w/ all segments in T

\[\begin{align*}
\text{e.g.:} \quad & S_1 & S_3 \\
& S_2 & S_1
\end{align*}\]

- before time t: $T = \{S_1, S_3\}$
- at time t:
 * event \Rightarrow upper endpoint of S_3
 - add S_3 to $T \Rightarrow T = \{S_1, S_3, S_3\}$
 - check S_3 for intersection w/ $S_1 + S_2$
- at time $t+1$:
 * event \Rightarrow lower endpoint of S_1
 - remove S_1 from $T \Rightarrow T = \{S_2, S_3\}$

Running Time of Sweepline Algorithm
- first sort segment endpoints by y-coordinate - $O(n \log n)$
 (duplicates - ok or degenerate?)
- 2n event points must be processed.
 the time to process an event point depends on
 * implementation of T (we'll use list...)
 * number of elements in T (when adding new segments)
 (because we check each one for intersection w/ new segs)

note: since # elements in T depends only on # segs intersecting
horizontal sweep line we may still test segs that
are "far apart"

\Rightarrow so alg may take $\Theta(n^2)$ time
even if $k = o(n^2)$

$: This algorithm is not output-sensitive enough
for us \Rightarrow but probably still better than Brute Force.
Ok, so now what?
we want to avoid testing segments that are "far apart"
horizontally... How??

Define segments \(s_i + s_j \) are horizontally adjacent (ha)
on the sweep-line \(l \) if their intersection points on \(l \) are adjacent.

Lemma Let \(s_i + s_j \) be two non-horizontal, non-overlapping
segments intersecting at point \(p \). (Assume also no
3rd segment intersects \(p \)).

Then there is an event point above \(p \) where
\(s_i + s_j \) will become adjacent in a horizontal ordering
of the segments intersecting \(l \).

Proof:
- Let \(l_p \) be horizontal line thru \(p \)
- Let \(x \) be lowest event point above \(l_p \)

- When sweep line is between \(p + x \), then \(s_i + s_j \)
 are horizontally adjacent on \(l \)
- When algorithm starts \(s_i + s_j \) are not horizontally
 adjacent on \(l \) (since \(l \) starts above \(s_i + s_j \))
- Since the sweep line status changes only at event points
 there must some event point at which \(s_i + s_j \) will
 1st become horizontally adjacent on \(l \).
To use the lemma we'll:

- order segments according to horizontal adjacency on \(L \)
- test two segs for intersection only when first became horiz. adj.

Status T: segments intersecting \(L \) AND horizontal adjacency order changes at:

- endpoints of segments (as before)
- at segment intersections (new events)

Three types of events

Let \(p \) = event point on \(L \), \(s_L, s_R \) be leftmost + rightmost neighbors of \(p \) in \(T \) (one)

(i) \(p \) is lower endpoint of segment \(s_i \)

- remove \(s_i \) from \(T \)
- check \(s_L + s_R \) for intersection w/ each other if they intersect in pt \(p' \) below \(p \), add \(p' \) to upcoming events

(ii) \(p \) is upper endpoint of \(s_i \)

- add \(s_i \) to \(T \)
- check \(s_L + s_R \) for intersection w/ \(s_i \) if they intersect in ptc(s) \(p' \) below \(p \) add \(p' \) to upcoming events

(iii) \(p \) is intersection point of \(s_i + s_j \)

- swap order of \(s_i + s_j \) in \(T \)
 - (wolog assume \(s_j \) now to left of \(s_i \))
 - check \(s_j + s_L \) and \(s_i + s_R \) for intersection if they intersect in ptc(s) \(p' \) below \(p \) add \(p' \) to upcoming events
General Algorithm

Input: set S of n line segments in the plane
Output: set of intersection points (and segments containing them)
1. $Q := \emptyset$ (event queue)
2. insert all segment endpoints into Q
 - Store segment w/ upper endpoint
3. $T := \emptyset$ (status structure)
4. while $Q \neq \emptyset$
 (a) find "next" event point p in Q
 (b) process event point p
 - remove p from Q
 - update T
 - report intersections
 - add new (upcoming) event pts to Q (intersection pts)
endwhile

Data Structures

1. Q - Event Queue
 necessary operations:
 - extract next event point \Rightarrow point w/ largest y-coord
 + smallest x-coord among these
 - insert new event point AND check for duplicates (segments become adj. mult. times)
\Rightarrow balanced binary search tree
 operations cost $O(\log m)$ where $m = \#$elements in Q

2. T - Status Structure (maintains sweepline status - order segm. intersect. it)
 necessary operations:
 - insert segments
 - delete segments
 - find left & right neighbors of segs
\Rightarrow balanced binary search tree
for simplicity
- leaves = segments stored here
- internal nodes = store segment that is rightmost leaf in leftmost subtree

E.g.:

```
  s_i
  \_/  \___
  s_j   s_k
   \_   
     s_p
```

- To find left/right neighbors "walk" down tree comparing to segs stored at internal nodes.
 E.g. to find left neighbor of \(p \) →
 " + right " " →

- Insert/search time \(O(\log n') \), \(n' = \# \text{segs in } T \), \(n' \leq n \)

Correctness of Algorithm

Lemma 2.2 (in text) Alg. finds + reports all intersections
Proof by induction on priority of event pts
 (priority by y-coord + then x-coord)

Running Time

\(n = \# \text{segments} \), \(k = \text{size of output} \)
- initialize \(Q \) - insert \(2n \) endpoints \(O(n \log n) \)
- while loop - #
 - each iteration - extract event pt from \(Q \) - \(O(\log n) \)
 - process event pt intersect test
 - insert/delete from \(T/\mathcal{Q} \) \(O(\log n) \)
 - # iterations = #event pts = \(2n + \# \text{intersections} = O(n + k) \)
- Total \(\Rightarrow O((n + k) \log n) \)
Degeneracies

- 3 or more segments intersect in same pt
 - * we can handle these, but need to be careful...
 - insert event pt only once
 - swapping orders in \(T \) when process

- two or more segments share endpoint
 - can deal with this too

- overlapping segment
 - can handle this too, but a bit harder

for all \(I \) need to alter/modify event handling a bit (see text)

Running time analysis

Now we want to show \(O((n+I)\log n) \)

\(I \) intersections (not size of output in terms of segments)

why different?

\(K \) = output size may be larger than \(I \)

- 1 intersection
 - but \(\binom{\log n}{2} \) pairwise intersections...

Not hard, see text.