Ch. 7 Voronoi Diagrams

Let \(P = \{ p_1, p_2, \ldots, p_n \} \) be \(n \) pts in the plane.

The Voronoi diagram of \(P \), \(\text{Vor}(P) \) is the subdivision of the plane into \(n \) cells, one for each \(p_i \in P \).

- cell \(V(p_i) = \{ q \mid \text{dist}(p_i, q) < \text{dist}(p_j, q) \ \forall p_j \in P, p_j \neq p_i \} \)

![Diagram](diagram)

Set of points closer to \(p_i \) than to \(p_2, p_3 \) or \(p_4 \).

Cell \(V(p_i) \)

- defined by intersect of halfplanes \(h(p_i, p_j), p_j \neq p_i \)
- where \(h(p_i, p_j) \) is open halfplane containing \(p_i \) and bounded by perpendicular bisector of \(p_i \) and \(p_j \)
- \(h(p_i, p_j) \) contains all pts closer to \(p_i \) than to \(p_j \)

\[
V(p_i) = \bigcap_{k \neq i} h(p_i, p_k)
\]

- \(V(p_i) \) is convex polygonal region bounded by at most \(n-1 \) vertices + \(n-1 \) edges

Theorem 7.2 Let \(P \) be set of \(n \) points in plane.

If all sites are collinear, then \(\text{Vor}(P) \) is \(n-1 \) parallel lines + \(n \) cells.

Else, \(\text{Vor}(P) \) is connected + its edges are either segments or half-lines.
Complexity of Vor(P) (#verts + #edges)
* each Voronoi cell has at most $n-1$ edges + $n-1$ vertices
 - Size of Vor(P) is at most quadratic

Is this pessimistic? Yes...

Theorem 7.3 The number of vertices of Vor(P) is at most $2n-5$ and the number of edges is at most $3n-6$.

Proof
Trivially true if sites are collinear. Assume they are not.
* We'll use Euler's Formula for connected planar graphs:
 \[v - e + f = 2 \]
 \#verts \#edges \#faces
* We cannot directly apply Euler's Formula since Vor(P) has infinite (half-line) edges.
 - add a vertex v_∞ "at infinity" & connect all half-infinite edges to v_∞
 - Vor($P \cup v_\infty$) has $(n_v + 1) - e_v + f_v = 2$
 - $n_v + 1 - e_v + 2 = 2$ \[n_v + 1 - e_v + 2 = 2 \]
 - $n_v + 1 = e_v$ \[n_v + 1 = e_v \]
 - $2n_v = \text{sum of degrees of all vertices in Vor}(P \cup v_\infty)$ \[2n_v = \sum \text{of degrees of all vertices in Vor}(P \cup v_\infty) \]
 - every vertex has degree at least 3
 \[2e_v \geq 3(n_v + 1) \]

* $3n_v + 3 \leq 2n_e$ \[n_v \leq 2n - 5 \]
 - by (3) \[n_v \leq 2n - 5 \]
* $3n_v + 3 \leq 2(n_v + n - 1)$ \[n_v \leq n_v + n - 1 \]
 - by (1) \[n_v \leq n_v + n - 1 \]
* $n_v \leq 2n - 5$ \[n_v \leq 2n - 5 \]
 - algebra
* $n_e = n_v + n - 1$ \[n_e = n_v + n - 1 \]
 - by (1)
* $n_e \leq (2n-5) + n - 1$ \[n_e \leq (2n-5) + n - 1 \]
 - by (3)
* $n_e \leq 3n - 6$ \[n_e \leq 3n - 6 \]
 - algebra
Characterization of edges $\&$ vertices of $\text{Vor}(P)$
- edges: parts of bisectors between sites
- vertices: intersection pts of bisectors

but, are $\Theta(n^2)$ bisectors $\&$ not all define edges...

Def: The largest empty circle of q wrt P $C_p(q)$ is largest circle w/ center q that doesn't contain any $p \in P$ in its interior.

Theorem 7.4 For $\text{Vor}(P)$ of pt set P:
(i) q is a vertex of $\text{Vor}(P) \iff C_p(q)$ has 3 or more sites on its boundary (no one in interior)
(ii) The bisector of sites $p_i + p_j$ defines edge of $\text{Vor}(P)$ \iff there is $q \in \mathbb{R}^2$ s.t. $C_p(q)$ contains $p_i + p_j$ on its boundary $\&$ no other sites on boundary or inside.

Proof
(i) \iff Let q be pt w/ $C_q(P)$ having p_i, p_j, p_k on boundary.
\triangleright Since $C_q(P)$ is empty, q must be on boundary of $V(p_i), V(p_j), V(p_k)$ \iff a vertex of $\text{Vor}(P)$
(\Rightarrow) every vertex q of $\text{Vor}(P)$ is incident to at least 3 Voronoi cells $V(p_i), V(p_j), V(p_k)$
* q is equidistant p_i, p_j, p_k $\&$ no closer site since $V(p_i), V(p_j), V(p_k)$ meet at q.
\triangleright hence interior of circle w/ p_i, p_j, p_k on boundary must be empty.

(ii) is similar.
Computing $\text{Vor}(P)$

Naive Approach
- compute $V(p_i) = \bigcap_{j \in i} h(p_i, p_j)$ for each $p_i \in P$
- use halfplane intersection algorithm - $O(n \log n)$ time each $V(p_i)$
 $\Rightarrow O(n^2 \log n)$

Fortune's Sweepline Algorithm - $O(n \log n)$
- sweep horizontal sweepline from top to bottom
 - instead of maintaining intersection of $\text{Vor}(P) \cup I$
 - keep track of portion of $\text{Vor}(P)$ above I that is computed already (cannot be changed by sites below I)
 - the beachline

What part of $\text{Vor}(P)$ above I cannot be changed anymore?
- region of \mathbb{R}^2 that is closer to some $p_i \in P$ above I than to I
 - for each such p_i above I, these pts closer to p_i than I are bounded by a parabola
 - set of all such pts bounded by parabolic arcs
 \Rightarrow beachline
Fact The beach line is x-monotone (intersected by a vertical line in exactly one point).

Note: Breakpoints between parabolic arcs lie on edges of $\text{Vor}(P)$ \Rightarrow breakpoints trace out $\text{Vor}(P)$ as sweepline moves

Sweepline Status \Rightarrow beachline

Event points
1. When new arc appears in beachline (site event)
2. When arc disappears from beachline (circle event)

Site event (new arc appears)

- When new "arc" appears it is just a pt on beach line
 - Two new breakpoints appear that trace out an edge of $\text{Vor}(P)$
 (move in opposite directions)

Fact Beach line consists of at most $2n-1$ parabolic arcs
- Each site adds one arc
- Splits an existing arc in two (all except first)
Circle event (an arc disappears)
- an existing arc shrinks to a point & disappears

\[\alpha + \alpha'' \text{ cannot be part of same parabola} \]
- when \(\alpha, \alpha', \alpha'' \) coincide we have apt of Vor(P) say \(q \)
- \(q \) is equidistant \(l \) & \(\Pi, \Pi', \Pi'' \)
\[\Rightarrow \text{circle centered at } q \text{ has lowest pt on } l \text{ must be empty} \]

\[\Rightarrow \text{when arc disappears} \]
\[\Rightarrow \text{two breakpoints meet (defining vertex of Vor(P))} \]
\[\Rightarrow \text{this is lowest point of circle thought sites (corr. to 3 adj arcs) meets sweep line. (event pt)} \]
\[\Rightarrow \text{circle event (lowest point of circle)} \]

DATA STRUCTURES

1. **Vor(P)**
 - doubly connected edge list.
 - add bounding box to sites in Vor(P) to have finite edges

2. **BEACH LINE \(T \)**
 - balanced binary search tree
 - leaves arcs of beach line (left to right order)
 - internal nodes are breakpoint

3. **EVENT QUEUE \(Q \)**
 - sites (ports)
 - circle events (ptrs to arcs in \(T \) which disappear)
 (lowest pt of circle)
Algorithm Voronoi Diagram (P)
1. init Q w/ all site events
2. while (Q not empty)
3. get highest event pt in Q
4. if a SITE-EVENT, then HANDLE-SITE-EVENT
 else HANDLE-CIRCLE-EVENT
5. remove event from Q
6. end while
7. fix up Vor(P) (have half-infinite edges, etc).

HANDLE-SITE-EVENT (pi)
1. search in T for arc a vertically above pi;
 - delete all circle events involving a from Q
2. replace a's leaf in T w/ 3-leaf subtree
 - middle leaf stores pi
 - outer leaves store pt pj corr. to a
 - inner nodes breakpts (pi, pi) + (pi, pj)
3. create new records for Vor(P) for half-edge
 separating V(pi) and V(pj) (traced by new breakpoints)
4. check triples for new arcs
 - insert new circle events if circle intersects 2 and
 - is not in Q already

[Diagram of Voronoi diagram with points pi, pj, and arc a]
HANDLE-CIRCLE-EVENT (p_0)

1. Search in T for arc α vertically above p_0
 - delete all circle events involving α from Q
2. delete leaf representing α from T.
 - update tuples representing breakpoints at internal nodes
3. add center of circle as vertex record in Vor(P)
 - create half-edge records for new breakpoint
4. check triples of arcs
 - insert new circle events to Q if necessary (new + intersect l)

Running Time: $O(n \log n)$
- Handle event pts $O(\log n)$ htree
 - search + rebalance + insert + delete
- $O(n)$ event pts (never insert same pt twice)
 - can "change" deleted circle events to the "true" event we are processing at that time
 - each "circle" event processed in vertex Vor(P) and there are $O(n)$ of these.

\Rightarrow $O(n \log n)$ total.

Storage: $O(n)$
- tree + Vor(P) + Queue
Degeneracies

1) two or more pts on horizontal line
 - two sites w/ same y-coordinate
 - break ties arbitrarily
 - coinciding event points.
 - 4 co-circular sites
 - ignore them (treat as multiple events)
 - in post-processing "merge" duplicate vertices.

2) site pi vertically below breakpoint
 - not clear which are to split...
 - get zero length arc
 ⇒ it will be removed later (when process circles).

Duality

The Voronoi diagram of Vor(P) in d-dimensions can
be transformed in the computation of a convex hull (intersection
of half-spaces in (d+1)-dimensions.
(details in Ch. 11.5)

e.g.
- map pt \(p = (p_x, p_y) \) to (non-vertical) plane \(z = 2p_x \cdot x + 2p_y \cdot y - (p_x^2 + p_y^2) \)
- intersection of half-spaces gives convex polyhedron
- projection of its verts + edges gives Vor(P).

\[
\begin{align*}
\text{halfspace tangent to paraboloid base.}
\end{align*}
\]
Voronoi Diagram in d-dim = Convex Hull in $(d+1)$-dim

Unit Paraboloid in 3-space

\[U := z = x^2 + y^2 \]

Point on x-y plane ($z = 0$) \(p = (p_x, p_y, 0) \)

Vertical line through \(p \) intersects \(U \) in

\[p' = (p_x, p_y, p_x^2 + p_y^2) \]

\(h(p) \) is non-vertical plane \(z = 2p_x x + 2p_y y - (p_x^2 + p_y^2) \)

\(h(p) \) contains \(p' \)
The Delaunay Triangulation

Def: The Delaunay triangulation Δ is the dual graph G of the Voronoi diagram $\text{Vor}(P)$.

$\text{DG}(P)$
- has a node for every Voronoi cell $V(p_i)$
- arc between nodes if corr. cells are adjacent in $V(p_i)$

Note: $\text{DG}(P)$ has an arc for every edge of $\text{Vor}(P)$

Fact: The Delaunay graph of a point set is plane graph.

Fact: If no 4 points of P are co-circular, $\text{DG}(P)$ is a triangulation. (Call point set in general position if no 4 co-circular)

and gives us Delaunay triangulation Δ. If not in general position, we call any triangulation of $\text{DG}(P)$ the Delaunay triangulation.

$\text{DG}(P)$
\text{NOT: a triangulation...}$\text{Vor}(P)$
Legal Triangulations (Sect 9.1)

- Let T be a triangulation with m triangles.
- Let $\{x_1, x_2, \ldots, x_m\}$ be the angles of the triangles sorted in increasing order.

 $A(T) = (x_1, x_2, \ldots, x_m)$ is the **angle vector** of T.

Def A triangulation T is **angle optimal** if

$A(T) \geq A(T')$ (lexicographic ordering) for all triangulations T' of P.

Angle optimal triangulations are useful for many applications:
- maximize the **minimal angle**

Theorem 9.9 Let P be a set of points in the plane.

- Any angle optimal triangulation of P is a Delaunay Triangulation.
- Any Delaunay triangulation of P maximizes the minimum angle over all triangulations of P.

Computing Delaunay Triangulations

1. Can first compute $\text{vor}(P)$ and then construct its dual graph (and triangulate it).

2. Can compute it directly using a randomized incremental algorithm (Sect 9.3)
 - expected time $O(n \log n)$
 - expected storage $O(n)$