CSCE 626
Performance Analysis Methodology
Introduction

• This lecture discusses how to properly design an experimental setup, measure and analyze the performance of parallel algorithms you develop.

• The methodology analysis applies to both the MPI and OpenMP implementations.
Experimental Setup - Parameters

Choose the problem size.
• Understand the machine architecture, cache size, etc.
• Choose a problem size that is larger than cache size.
 • Ensure this holds for all processor counts studied.
 • Otherwise, may lead to super linear speedup.

Generate the input data aware of any input sensitivity.
• Does the complexity of the algorithm depend on the nature of the input?
 • For example, sorting algorithm often depend on the input data.
 • Varying data type may effect running time.
• Choose test cases that cover average case, best case and worst case performance.
Choose the number of processors.
• Based on available resources.
• Depends on the nature of the algorithm.
 • Generally convenient to use powers of 2 (i.e., 1, 2, 4, 8, 16 …).

Use an appropriate timing mechanism.
• Low overhead of timer (PAPI, system specific).
• Measure within clock resolution.
• Running times should be at least a second or two.
• Place timers around actual algorithm (e.g., don’t measure input initialization).
Experimental Setup

Repeat experiments to increase confidence in results.

- Variability in the system will often lead to variability in the measured running time.
 - Shared resource – other users affect your jobs.
 - Operating system processes are non-deterministic.
 - Allocation of nodes to a job changes communication costs.

- If possible, repeatedly invoke executable in same batch job.

- Confidence Interval.
 - Used to indicate the reliability of the estimate.
 - Qualified by a particular confidence level usually specifies as a percentage (e.g., 95%).
 - Especially useful when comparing the relative performance of two candidate implementations or algorithms.
Unclear from the first graph which algorithm performs better. Overlapping confidence intervals.

In second graph, Algorithm 1 clearly performs better. Disjoint confidence intervals.
Experimental Setup

Computing the Confidence Interval.
Usually computed for a confidence level of 95%.

An observation lies between the computed interval around the mean with 0.95 probability.

1. Repeat the experiment 32 times.
2. Compute the mean (m) and standard deviation (sd) of observations.
3. Compute $k = \alpha \times \frac{sd}{\sqrt{32}}$ ($\alpha = 1.96$ for confidence interval of 95%).

Observation lies in interval $[m-k, m+k]$ with 95% probability.

Can “tightly” interval by gathering more samples (i.e., runs).
Experimental Setup - Speedup

Speedup

Ratio of time taken by *the best sequential algorithm* to time taken by a parallel algorithm for a given value of P.

- Ideal speedup is linear (equal to number of processors).

- Super-linear speedup generally due to:
 - External Factors (e.g., cache effects where input fits in cache for larger P).
 - Algorithmic Effects (e.g., algorithm runs same function with different inputs until one succeeds so that the parallel one finds the solution faster).
Example Plot - Speedup

![Graph showing speedup vs. number of processors. The blue line represents the linear speedup, and the red line represents the experimental speedup. The graph indicates a sub-linear speedup with increasing numbers of processors.]
Experimental Setup - Scalability

Strong scaling

Analyzes how the solution time varies with the number of processors for a fixed problem size.

- Even with $P=1$, not same as speedup (base is T_{P1} vs. T_{seq}). *Speedup at $P=1$ is typically < 1, whereas scalability is 1.*

- Scaling base need not be $P=1$. *For larger systems, may start at 128, 1K, 10K, etc.*

- Increasing P decreases N/P, which can affect behavior. *Examples:*
 - Cache utilization may change (e.g., super-linear curves).
 - Ratio of communication to computation can change.
Example Plot - Strong Scaling

Note in this case, we start the scalability study at P=16.
Experimental Setup - Scalability

Weak Scaling

Analyzes how the solution time varies with the number of processors for a fixed problem size per processor.

- Often most viable option for larger ranges of P. Fixed problem sizes may prove to large for small processor counts (or too small for large P).

- Important to many users who employ parallelism to solve larger problems, not just the same problem faster.

- Ideal weak scaling curve is constant (flat).
Example Plot - Weak Scaling

![Graph showing weak scaling with scalability on the y-axis and processors on the x-axis. The graph compares constant and experimental lines.](image)
Finding Big-O constants (sequentially)

Recall the definition of Big-O:

\[f(n) = O(g(n)) \text{ means } 0 \leq f(n) \leq c \cdot g(n), \text{ for all } n \geq n_0 \]

How to experimentally determine c and \(n_0 \):

1. Plot ratio of experimental time to the theoretical complexity of the sequential algorithm (y-axis), varying the input size (x-axis).

2. The values of \(n_0 \) and c can be determined from the plot.
 - \(n_0 \) is the value of n (x-axis) where the plot becomes horizontal.
 - C is the value of ratio (y-axis) after it stabilizes (after \(n_0 \)).
Finding Big-O constant

At point where plot flattens:

\[n_0 = 25 \times 10^6, \ c = .002 \]

What does it tell us about the proposed theoretical bound if:

- The plot continues upwards?
- The plot trends downward?
Finding Big-O constants (In Parallel)

Analysis in parallel is more complex. *Both input size and the number of processors may vary.*

For a fixed P, determine values of n_0 and c.
- Use same approach as in sequential case.
- Repeat for multiple values of P (at least 3).
- Problem size per processor should be greater than n_0 for sequential algorithm.
Printing Output in Parallel

All MPI processors / OpenMP threads share common stdout. *Unless synchronized, order of output is non-deterministic.*

One simple approach for debugging:

```c++
for (int i = 0; i < num_procs; ++i)
{
    if (i == my_id)
    {
        std::cout << "Hello World from " << my_id << "\n";
        MPI_Barrier();
    }
}
```
Previous discussion assumed you measured the complete running time of the algorithm.

We may also want to measure and analyze, separately:

- The steps/phases of the algorithm.
- The communication and computation.

Why?

Measuring individual components is useful to pinpoint inefficiencies and bottlenecks sub-steps of an algorithm.

Prioritize optimization and refinement efforts.
Summary

- Experimental setup
- Timing mechanism
- Computing Big-O constants
- Displaying results
- Measure & analyze components of algorithm to better understand performance.