Limitations of PRAMS (Ch. 10)

Relationship between PRAM Models

\[\text{EREW} \leq \text{CREW} \leq \text{CRCW} \text{ (arbitrary} \leq \text{common} \leq \text{priority)} \]

Theorem (10.1) A concurrent read or write instruction of a \(p \) processor priority CRCW PRAM can be implemented on a \(p \) processor EREW PRAM in \(O(\log p) \) time.

Proof (sketch)

Read Operation (Write is similar + easier)

On CRCW: processor \(Q_i \) reads loc \(M_{j_i} \), \(1 \leq i \leq p \)

On EREW: processor \(P_i \) simulates \(Q_i \)

- reserve mem locs \(M_1, M_2, \ldots, M_p \) for simulation
- \(O(1) \) 1. \(P_i \) writes pair \(<j_i, i> \) to \(M_i \)
- \(O(\log p) \) 2. in parallel, lexicographically sort pairs in \(M_1, M_2, \ldots, M_p \)
 \[\text{now } M_1, M_2, \ldots, M_p \text{ organized in blocks where each } x/ \]
 \[\text{block repres. procs wanting to read same value } x/ \]
- \(O(1) \) 3. First elt in each block performs read
- \(O(\log p) \) 4. Propagate value read to all els in block w/ segmented prefix sums
- \(O(1) \) 5. Write values back to correct \(M_i \) locs
- \(O(1) \) 6. \(P_i \) reads its desired value from \(M_i \)

\[e.g. \quad p=4 \quad Q_i \quad \begin{array}{c|cccc}
 & 1 & 2 & 3 & 4 \\
\hline
M_{ji} & 6 & 5 & 5 & 6
\end{array} \]

\[M_5 = x \quad M_6 = y \]

\[\begin{array}{cccc}
 1 \quad M_1: & <6,1> & <5,2> & <5,3> & <6,4> \\
 2 \quad <5,2> & <5,3> & <6,1> & <6,4> \\
 3 \quad x & X & Y \\
 4 \quad x & X & Y & y \\
 5 \quad M: & Y & X & X & Y
\end{array} \]
Corollary (10.1) Let A be an alg that runs on a p-processor priority CRCW PRAM in time T. Then A can be implemented on a p-processor EREW PRAM in time $O(T \log p)$.

Note:
- CREW PRAM can simulate priority CRCW PRAM in same time ($O(\log p)$ slowdown)
- EREW PRAM can simulate CREW PRAM with $O(\log p)$ slowdown

⇒ in general, these results cannot be improved
⇒ relationship among CRCW PRAMs more subtle (see text)

Lowerbounds
- sequential lowerbound results give lowerbounds on the work for a parallel algorithm
- most interesting to examine lowerbounds on the time required to solve a problem in parallel

Most basic lowerbound result:
Lemma (Cor 10.2 in text): A CREW PRAM requires $\Omega(\log n)$ time to compute the Boolean OR of n variables, regardless of the number of processors available.

Corollary The following problems require $\Omega(\log n)$ time on a CREW PRAM w/ any # of processors
⇒ Sorting a sequence $x_1, x_2, ..., x_n$ where $x_i \in \{0, 1\}^n$
⇒ Computing $\text{sum} x_1, x_2, ..., x_n$ where $x_i \in \{0, 1\}^n$
⇒ Computing max of n inputs
The Class NC and P-Completeness

The Class NC (Nick's Class for Nick Pippenger @ UBC)
the set of problems that can be solved "efficiently" in parallel on a PRAM
⇒ fast w/ a reasonable number of processors
 • fast = time polylogarithmic in input size
 $O(\log^k n)$ for constant k independent of n
 • reasonable # procs = # procs polynomial in n
 $O(n^c)$ for constant c independent of n

Note: Similar to class P in that a very "bad" algorithm can put problem in NC, i.e., in reality not efficient e.g. $O(\log^{59} n)$ time + $O(n^{100})$ procs

Sometimes we further subdivide class NC

NC'$ = $ problems solvable in time $O(\log n)$
NC'' = problems solvable in time $O(\log^2 n)$

NCk = problems solvable in time $O(\log^k n)$

Note:
(1) Thus far all problems we've studied are in NC
(2) Class RNC is analogous for randomized PRAM (w/ random # gen.)

Importance of class NC
• if a problem is not in NC then it is "hard to parallelize"
• similar to class P, i.e., if a problem is not in P, then we think it is hard to solve efficiently.
P-Completeness

P - class of probs solvable in polynomial time on sequential machine

NC \subseteq P?
- Yes - convert parallel alg to sequential alg
 - sequential running time \(O(n^c \log^k n) = O(n^{1+c}) \)

P \subseteq NC?
- i.e. can every problem solvable "efficiently" on uniprocessor
 be solved "efficiently" in parallel?
- Don't know... but we think not.

The class P-Complete consists of the problems in P
that we think are not in NC.

NC-Reductions

As for NP-Complete problems, we use reductions to build up
our class of P-Complete problems.

To reduce \(P_1 \) to \(P_2 \)
1. transform input \(x \) for \(P_1 \) to input \(x' \) for \(P_2 \)
2. run (assumed) algorithm for \(P_2 \) on \(x' \)
3. transform answer from 2 to get answer for \(P_1 \) on \(x \)

We say \(P_1 \) is NC-Reducible to \(P_2 \) if transformations
in steps 1 + 3 can be done w/ NC-algorithms

\implies \text{implys NC-algorithm for } P_2 \text{ can be used to obtain NC-algorithm for } P_1 \text{ (} P_2 \text{ is at least as hard as } P_1 \text{)}
Facts:
1. Suppose $P_1 \leq_{nc} P_2$
 Then, $P_2 \in NC$ implies $P_1 \in NC$
 /* P_2 is at least as hard as P_1 */

2. Suppose $P_1 \leq_{nc} P_2$ and $P_2 \leq_{nc} P_3$
 Then $P_1 \leq_{nc} P_3$
 /* \leq_{nc} is transitive */

P-Completeness:
A problem P_i is P-Complete if
(1) $P_i \in P$ and
(2) every problem $P' \in P$, $P' \leq_{nc} P_i$

Lemma Let P' be a P-Complete Problem.
If $P' \in NC$, then $NC = P$.
/* if $P \neq NC$, as we believe, then no P-complete */
/* problem is in NC */

As w/ NP-Completeness, we need to start with one
P-Complete Problem. P_i^*
⇒ Need to show directly that every problem $P' \in P$
is NC-reducible to P_i.

Circuit Value Problem (CVP):
input: a Boolean Circuit C represented by a $C = (g_1, g_2, \ldots, g_n)$
of gates (NOT, two input AND + OR gates) + set of inputs
question: does value of circuit = one?
Theorem (10.12) CVP is P-Complete

Now, we can show other problems are P-complete by reducing these to CVP to them.
I actually can reduce any known P-complete problem to this.

As w/ NP-Completeness, we study decision problems? (why?)

1. Ordered DFS:
 - input: digraph \(G = (V,E) \) specified by adj lists and
 \(S, u, v \in V \)
 - question: Is \(u \) visited before \(v \) in DFS of \(G \) starting at \(s \)?

2. Max Flow
 - input: network w/ integer valued capacities
 source \(s \) + sink \(t \)
 - question: Is the value of the max \(s-t \) flow odd?

3. Linear Inequalities (LI)
 - input: \(n \times n \) matrix \(A \) + \(n \) dimensional vector \(b \) (integers)
 - question: Is there a rational \(n \)-dim vector \(x \) s.t. \(Ax \leq b \)?

Book shows all 3 above are P-Complete.
Theorem (10.17) LI is P-Complete

Proof

(1) LI ∈ P

(2) CVP ≤_P LI /* So NC-alg for LI gives NCalg for CVP */

• let C = ⟨g₁, g₂, ..., gₙ⟩ w/ inputs be instance of CVP.

• with each node gᵢ of C we associate a variable xᵢ and a set of inequalities as follows:

 (idea: force xᵢ to be 0 or 1 whenever inputs are 0 or 1)

 (i) if gᵢ is an input node:
 xᵢ = 1 if gᵢ = 1
 xᵢ = 0 if gᵢ = 0

 (ii) if gᵢ = gⱼ ∧ gₖ:
 \[-xᵢ ≤ 0 (xᵢ ≥ 0)\] if xⱼ, xₖ ∈ {0, 1}
 \[xᵢ - xⱼ ≤ 0 \quad \text{if } xᵢ - xⱼ ≤ 0\] if xᵢ - xⱼ ≤ 0
 \[xᵢ - xₖ ≤ 0 \quad \text{if } xᵢ - xₖ ≤ 0\] if xᵢ - xₖ ≤ 0
 \[xⱼ + xₖ - xᵢ ≤ 1\] proper value for AND

 e.g. if xⱼ = xₖ = 1 then xᵢ = 1 (xᵢ = 0)

 (iii) if gᵢ = gⱼ ∨ gₖ:
 \[xᵢ ≤ 1 \quad \text{if } xᵢ ≤ 1\] if xⱼ, xₖ ∈ {0, 1}
 \[xⱼ - xᵢ ≤ 0 \quad \text{if } xⱼ - xᵢ ≤ 0\] if xⱼ - xᵢ ≤ 0
 \[xₖ - xᵢ ≤ 0 \quad \text{if } xₖ - xᵢ ≤ 0\] if xₖ - xᵢ ≤ 0
 \[xᵢ - xⱼ - xₖ ≤ 0\] proper value for OR

 e.g. if xⱼ = xₖ = 0 then xᵢ = 0 (xᵢ = 1)

• Also add:

 \[-xₙ ≤ -1\]

 \[xₙ ≤ 1\]

⇒ output of circuit is 1 ⇔ xₙ = 1

⇒ there (corresponding linear system has a feasible solution)

⇒