Towards Autonomous Navigation and Assembly: Infrared Detection
Daniela Puente, Leonel Pena, Saurabh Mishra, Read Sandstrom, Nancy M. Amato

Project Setup
- Robot has a computer mounted on top which is in charge of seeing the markers and sending back their information.
- It is in charge of exploring the environment and ultimately assembling the boxes that form the A&M logo.
- Markers have unique numbers and positions on the boxes and environment.
- They contain x & y coordinates in environment.
- Used for robot localization and positioning.
- Each contain programmed instructions for robot to follow.

What is Motion Planning?
- Motion Planning is the problem of finding a collision-free path from a start to goal configuration.
- Generates random samples to form a roadmap, then extracts the best valid path.

The Goal of the Project
Use Mobile robots to position objects by:
- Using visual aid to localize the robot and boxes.
- Planning a path for the robot to take.
- Finding appropriate tool to push objects.
- Recharging autonomously.

Results
- We found that the optimal tolerance value is 0.25 because it balances hardware and software error.
- We gathered x, y, and angle orientation of markers on boxes.
- We also measured the x, y, and angle orientation of markers on boxes.

Experiments:
- Centering: positioning the robot behind the center of mass of an object.
- Box positioning with and without a planar, pushing surface (plow)
- Markers were also placed on and around the boxes.
- We also measured the x, y, and angle orientation of markers on boxes.

Centering Tests
- Distance to box center (m) vs. Tolerance [m] vs. Time [s]
- Average Accuracy vs. Average Time

Plow vs. No Plow:
- In second operation, X Error decreased with plow
- %Error & Time were reduced with plow
- Unexpected inverse relationship between tolerance and error due to hardware downfalls

Moving a Box a Set Distance off Two Walls (With Plow):
- Average X Error vs. Average Y Error vs. Average Time

Conclusion
- We were able to localize, push a box to a specified location, and dock with the robot. Performance was improved by adding a plow and refining the tolerance value.
- Future work includes extending this method to more complex scenarios with multiple objects and robots.

Acknowledgements
The research supported in part by NSF Awards CNS-1305387, CCF-1350389, CCF-1618367, CCF-1711701, CNS-1934038, CNS-1934038, CNS-2052530, CNS-2052530, CNS-2052530, CNS-2052530, CNS-2052530. (All supported by the NSF.

Method
- Able to successfully acquire data from the markers e.g., position of marker, distance and angle to the robot.
- Robot can successfully push a box forward a given distance with a margin of error under 5%.
- Robot can accurately compute the distance between two markers and wall.
- Robot uses trigonometric functions to center itself in front of the box, facing towards it.

Infrared (IR) Sensor Setup
- The Home Base emits infrared signals in fields, including left (blue), middle (purple), right (orange), and a force field (yellow).
- The robot would then use its own infrared sensor to locate itself within the fields of the Home Base.

Problem: The robot needs to recharge at the Home Base after assembly or when needing charge.

**Final position?
-**
- Position robot to a neighboring side of the box.