What is a Lower Bound?

- Provides information about the best possible efficiency of ANY algorithm for a problem
- Tells us whether we can improve an algorithm or not
- When lower bound is (asymptotically) the same as the best upper bound (provided by an algorithm), the bound is TIGHT
- If there is a gap, there might be room for improvement
Techniques for Proving Lower Bounds

- Trivial (size of input or output)
 - Ex: Any algorithm to generate all permutations of n elements requires time $\Omega(n!)$ because there are $n!$ outputs
 - Ex: Computing the product of two n-by-n matrices requires time $\Omega(n^2)$ because the output has n^2 entries
 - Ex: Any TSP solution for n cities requires $\Omega(n^2)$ time because there are $\Theta(n^2)$ inputs to be taken into account.
Techniques for Proving Lower Bounds

- Information-theoretic:
 - Consider the amount of information that the solution must provide
 - Show that each step of the algorithm can only produce so much information
 - Uses mechanism of “decision trees”
 - Example next...
Comparison-Based Sorting

- We’ve seen mergesort, insertion sort, quicksort, heapsort,...
- All these algorithms are comparison-based
 - the behavior depends on relative values of keys, not exact values
 - behavior on [1,3,2,4] is same as on [9,25,23,99]
- Fastest of these algorithms was $O(n \log n)$.
- We will show that's the best you can get with comparison-based sorting.
Decision Tree

- Consider *any* comparison based sorting algorithm
- Represent its behavior on all inputs of a fixed size with a *decision tree*
- Each tree node corresponds to the execution of a comparison
- Each tree node has two children, depending on whether the parent comparison was true or false
- Each leaf represents correct sorted order for that path
Decision Tree Diagram

first comparison: check if \(a_i \leq a_j \)

- YES
 - second comparison
 - if \(a_i \leq a_j \): check if \(a_k \leq a_l \)
 - YES
 - third comparison
 - if \(a_i \leq a_j \) and \(a_k \leq a_l \): check if \(a_x \leq a_y \)
 - NO
 - NO
 - NO
 - NO
- NO

- second comparison
 - if \(a_i > a_j \): check if \(a_m \leq a_p \)
 - YES
 - NO
 - NO

Insertion Sort

for j := 2 to n to
 key := a[j]
 i := j-1
 while i > 0 and a[i] > key do
 a[i+1] := a[i]
 i := i -1
 endwhile
 a[i+1] := key
endfor
Insertion Sort for $n = 3$

Diagram showing the decision process for insertion sort with $n = 3$. The process starts with comparing a_1 and a_2, then a_2 and a_3, and finally a_1 and a_3. Each comparison leads to a decision path that results in the sorted order a_1, a_2, a_3. The possible outcomes are $a_1 \leq a_2$, $a_2 \leq a_3$, and $a_1 \leq a_3$. The sorted sequences are $a_1 a_2 a_3$, $a_1 a_3 a_2$, $a_3 a_1 a_2$, $a_2 a_3 a_1$, and $a_3 a_2 a_1$. The decision tree visually represents these comparisons and outcomes.
Insertion Sort for $n = 3$
How Many Leaves?

- Must be at least one leaf for each permutation of the input
 - otherwise there would be a situation that was not correctly sorted
- Number of permutations of n keys is $n!$.
- Idea: since there must be a lot of leaves, but each decision tree node only has two children, tree cannot be too shallow
 - depth of tree is a **lower bound** on running time
Key Lemma

Height of a binary tree with $n!$ leaves is $\Omega(n \log n)$.

Proof: Maximum number of leaves in a binary tree with height h is 2^h.

$h = 1$, 2^1 leaves

$h = 2$, 2^2 leaves

$h = 3$, 2^3 leaves
Proof of Lemma

- Let h be height of decision tree.
- Number of leaves in decision tree, which is $n!$, is at most 2^h.

\[2^h \geq n! \]
\[h \geq \log(n!) \]
\[= \log(n(n-1)(n-2)...(2)(1)) \]
\[\geq (n/2)\log(n/2) \quad \text{by algebra} \]
\[= \Omega(n \log n) \]
Finishing Up

- Any binary tree with $n!$ leaves has height $\Omega(n \log n)$.
- Decision tree for any comparison-based sorting alg on n keys has height $\Omega(n \log n)$.
- Any comp.-based sorting alg has at least one execution with $\Omega(n \log n)$ comparisons.
- Any comp.-based sorting alg has $\Omega(n \log n)$ worst-case running time.
Techniques for Proving Lower Bounds

Problem reduction:
- Assume we already know that problem P is hard (i.e., there is some lower bound of X on its running time)
- Show that problem Q is at least as hard as problem P by reducing problem P to Q
- I.e., if we can solve Q, then we can solve P
- Implies that X is also a lower bound for Q