CSCE 411
Design and Analysis of Algorithms

Set 12: Undecidability
Slides by Prof. Jennifer Welch
Spring 2014
Sources

Understanding Limits of Computing

- So far, we have studied how efficiently various problems can be solved.
- There has been no question as to whether it is possible to solve the problem.
- If we want to explore the boundary between what can and what cannot be computed, we need a model of computation.
Models of Computation

- Need a way to clearly and unambiguously specify how computation takes place
- Many different mathematical models have been proposed:
 - Turing Machines
 - Random Access Machines
 - ...
- They have all been found to be equivalent!
Church-Turing Thesis

- Conjecture: Anything we reasonably think of as an algorithm can be computed by a Turing Machine (specific formal model).

- So we might as well think in our favorite programming language, or in pseudocode.

- Frees us from the tedium of having to provide boring details
 - In principle, pseudocode descriptions can be converted into some appropriate formal model
There Exist Uncomputable Functions

- Consider all programs (in our favorite model) that compute functions from \mathbb{N} to \mathbb{N} (\mathbb{N} is set of natural numbers).

- Show that the set of such functions cannot be enumerated (i.e., is uncountable).

- Show that the set of all programs can be enumerated (i.e., is countable).

- Thus there must be some functions that do not have a corresponding program.
Set of Functions is Uncountable

- Suppose in contradiction the set of functions from \(\mathbb{N} \) to \(\mathbb{N} \) is countable.
- Let the functions in the set be \(f_0, f_1, f_2, \ldots \).
- Define a function \(f^d \) (using "diagonalization") that should be in the set but is not equal to any of the \(f_i \)'s.
- If we can define such a function \(f^d \), this would be a contradiction, and thus the set of functions would be uncountable.
Diagonalization

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>4</td>
<td>14</td>
<td>34</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>f_1</td>
<td>55</td>
<td>32</td>
<td>777</td>
<td>3</td>
<td>21</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>f_2</td>
<td>90</td>
<td>2</td>
<td>5</td>
<td>21</td>
<td>66</td>
<td>901</td>
<td>2</td>
</tr>
<tr>
<td>f_3</td>
<td>4</td>
<td>44</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>f_4</td>
<td>80</td>
<td>56</td>
<td>32</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>f_5</td>
<td>43</td>
<td>345</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f_6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>
Diagonalization

- Define the function: \(f^d(n) = f_n(n) + 1 \)

- In the example:
 - \(f^d(0) = 4 + 1 = 5 \), so \(f^d \neq f_0 \)
 - \(f^d(1) = 32 + 1 = 33 \), so \(f^d \neq f_1 \)
 - \(f^d(2) = 5 + 1 = 6 \), so \(f^d \neq f_2 \)
 - \(f^d(3) = 7 + 1 = 8 \), so \(f^d \neq f_3 \)
 - \(f^d(4) = 3 + 1 = 4 \), so \(f^d \neq f_4 \)
 - etc.

- So \(f^d \) is not in the list of all functions, contradiction.
Set of All Programs is Countable

- Fix your computational model (e.g., programming language).
- Every program is finite in length.
- For every integer n, there is a finite number of programs of length n.
- Enumerate programs of length 1, then programs of length 2, then programs of length 3, etc.
Uncomputable Functions

- Previous proof just showed there must exist uncomputable functions
- Did not exhibit any particular uncomputable function
- Maybe the functions that are uncomputable are uninteresting...
- But actually there are some VERY interesting functions (problems) that are uncomputable
The Function Halt

Consider this function, called Halt:
- input: code for a program P and an input X for P
- output: 1 if P terminates (halts) when executed on input X, and 0 if P doesn't terminate (goes into an infinite loop) when executed on input X

By the way, a compiler is a program that takes as input the code for another program.

Note that the input X to P could be (the code for) P itself.
- in the compiler example, a compiler can be run on its own code
The Function Halt

- We can view Halt as a function from N to N:
 - P and X can be represented in ASCII, which is a string of bits.
 - This string of bits can also be interpreted as a natural number.
- The function Halt would be a useful diagnostic tool in debugging programs.
Halt is Uncomputable

- Suppose in contradiction there is a program P_{halt} that computes Halt:
 - On input (P,X), P_{halt} returns 1 if P halts on input X and P_{halt} returns 0 if P does not halt on input X
- Use P_{halt} as a subroutine in another program, P_{self}.
- Description of P_{self}:
 - Input: code for any program P
 - Constructs pair (P,P) and calls P_{halt} on (P,P)
 - Returns same answer as P_{halt}
P_{self}

The diagram shows a function P_{self} that takes an input P and outputs (P,P), which is then processed by another function P_{halt}. The output of P_{halt} is:

- 1 if P halts on input P
- 0 if P doesn't halt on input P
Halt is Uncomputable

- Now use P_{self} as a subroutine inside another program P_{diag}.
- Description of P_{diag}:
 - input: code for any program P
 - call P_{self} on input P
 - if P_{self} returns 1 then go into an infinite loop
 - if P_{self} returns 0 then output 0
- P_{diag} on input P does the opposite of what program P does on input P
P_{diag}
Halt is Uncomputable

- Review behavior of P_{diag} on input P:
 - If P halts when executed on input P, then P_{diag} goes into an infinite loop
 - If P does not halt when executed on input P, then P_{diag} halts (and outputs 0)

- What happens if P_{diag} is given its own code as input? It either halts or doesn't.
 - If P_{diag} halts when executed on input P_{diag}, then P_{diag} goes into an infinite loop
 - If P_{diag} doesn't halt when executed on input P_{diag}, then P_{diag} halts
Halt is Uncomputable

- What went wrong?
- Our assumption that there is an algorithm (program) to compute Halt was incorrect.
- So there is no algorithm that can correctly determine if an arbitrary program halts on an arbitrary input.
Undecidability

The analog of an uncomputable function is an **undecidable set**.

The theory of what can and cannot be computed focuses on identifying sets of strings:

- an algorithm is required to "decide" if a given input string is in the set of interest
- similar to deciding if the input to some NP-complete problem is a YES or NO instance
Undecidability

- Recall that a (formal) language is a set of strings, assuming some encoding.
- Analogous to the function Halt is the set H of all strings that encode a program P and an input X such that P halts when executed on X.
- There is no algorithm that can correctly identify for every string whether it belongs to H or not.
More Reductions

- For NP-completeness, we were concerned with (time) *complexity* of problems:
 - reduction from P1 to P2 had to be fast (polynomial time)
- Now we are concerned with *computability* of problems:
 - reduction from P1 to P2 just needs to be computable, don't care how slow it is
Many-One Reduction

all strings over L_1's alphabet

all strings over L_2's alphabet

f
Many-One Reduction

- YES instances map to YES instances
- NO instances map to NO instances
- computable (doesn't matter how slow)
- Notation: $L_1 \leq_m L_2$
- Think: L_2 is at least as hard to compute as L_1
Many-One Reduction Theorem

Theorem: If $L_1 \leq_m L_2$ and L_2 is computable, then L_1 is computable.

Proof: Let f be the many-one reduction from L_1 to L_2. Let A_2 be an algorithm for L_2. Here is an algorithm A_1 for L_1.

- **input:** x
- **compute** $f(x)$
- **run** A_2 on input $f(x)$
- **return** whatever A_2 returns
Implication

- If there is no algorithm for L_1, then there is no algorithm for L_2.
- In other words, if L_1 is undecidable, then L_2 is also undecidable.
- Pay attention to the direction!
Example of a Reduction

- Consider the language L_{NE} consisting of all strings that encode a program that halts (does not go into an infinite loop) on at least one input.

- Use a reduction to show that L_{NE} is not decidable:
 - Show some known undecidable language $\leq_m L_{NE}$.
 - Our only choice for the known undecidable language is H (the language corresponding to the halting problem).
 - So show $H \leq_m L_{NE}$.
Example of a Reduction

Given an arbitrary H input (encoding of a program P and an input X for P), compute an L_{NE} input (encoding of a program P') such that P halts on input X if and only if P' halts on at least one input.

Construction consists of writing code to describe P'.

What should P' do? It's allowed to use P and X.
Example of a Reduction

- The code for P' does this:
 - input X':
 - ignore X'
 - call program P on input X
 - if P halts on input X then return whatever P returns

- How does P' behave?
 - If P halts on X, then P' halts on every input
 - If P does not halt on X, then P' does not halt on any input
Example of a Reduction

- Thus if (P,X) is a YES input for H (meaning P halts on input X), then P' is a YES input for L_{NE} (meaning P' halts on at least one input).

- Similarly, if (P,X) is a NO input for H (meaning P does not halt on input X), then P' is a NO input for L_{NE} (meaning P' does not halt on even one input).

- Since H is undecidable, and we showed $H \leq_m L_{NE}, L_{NE}$ is also undecidable.
Generalizing Such Reductions

- There is a way to generalize the reduction we just did, to show that lots of other languages that describe properties of programs are also undecidable.

- Focus just on programs that accept languages (sets of strings):
 - I.e., programs that say YES or NO about their inputs
 - Ex: a compiler tells you YES or NO whether its input is syntactically correct
Properties About Programs

- Define a property about programs to be a set of strings that encode some programs.
 - The "property" corresponds to whatever it is that all the programs have in common

Example:
- Program terminates in 10 steps on input y
- Program never goes into an infinite loop
- Program accepts a finite number of strings
- Program contains 15 variables
- Program accepts 0 or more inputs
Functional Properties

A property about programs is called functional if it just refers to the language accepted by the program and is not about the specific code of the program.

- Program terminates in 10 steps on input y not functional
- Program never goes into an infinite loop functional
- Program accepts a finite number of strings functional
- Program contains 15 variables not functional
- Program accepts 0 or more inputs functional
Nontrivial Properties

A functional property about programs is **nontrivial** if some programs have the property and some do not.

- Program never goes into an infinite loop **nontrivial**
- Program accepts a finite number of strings **nontrivial**
- Program accepts 0 or more inputs **trivial**
Rice's Theorem

- Every nontrivial (functional) property about programs is undecidable.
- The proof is a generalization of the reduction shown earlier.
- Very powerful and useful theorem:
 - To show that some property is undecidable, only need to show that is nontrivial and functional, then appeal to Rice's Theorem
Applying Rice's Theorem

Consider the property "program accepts a finite number of strings".

This property is functional:
- it is about the language accepted by the program and not the details of the code of the program

This property is nontrivial:
- Some programs accept a finite number of strings (for instance, the program that accepts no input)
- some accept an infinite number (for instance, the program that accepts every input)

By Rice's theorem, the property is undecidable.
Implications of Undecidable Program Property

- It is not possible to design an algorithm (write a program) that can analyze any input program and decide whether the input program satisfies the property!

- Essentially all you can do is simulate the input program and see how it behaves
 - but this leaves you vulnerable to an infinite loop