CSCE 411
Design and Analysis of Algorithms

Set 2: Brute Force & Exhaustive Search
Slides by Prof. Jennifer Welch
Spring 2014
Brute Force & Exhaustive Search

- Straightforward way to solve a problem, based on the definition of the problem itself; often involves checking all possibilities

Pros:
- widely applicable
- easy
- good for small problem sizes

Con:
- often inefficient for large inputs
Brute Force Sorting

- **Selection sort**
 - scan array to find smallest element
 - scan array to find second smallest element
 - etc.

- **Bubble sort**
 - scan array, swapping out-of-order neighbors
 - continue until no swaps are needed

- Both take $\Theta(n^2)$ time in the worst case.
Brute Force Searching

- Sequential search:
 - go through the entire list of \(n \) items to find the desired item
- Takes \(\Theta(n) \) time in the worst case
Brute Force Searching in a Graph

- (Review graph terminology and basic algorithms)
- Breadth-first search:
 - go level by level in the graph
- Depth-first search:
 - go as deep as you can, then backtrack
- Both take $\Theta(V+E)$ time, where $|V|$ is the number of vertices and $|E|$ is the number of edges
Brute Force for Combinatorial Problems

- Traveling Salesman Problem (TSP):
 - given a set of n cities and distances between all pairs of cities, determine order for traveling to every city exactly once and returning home with minimum total distance

- Solution: Compute distance for all “tours” and choose the shortest.

- Takes $\Theta(n!)$ time (terrible!)
Do we need to consider more tours?
Something odd about the “distances”?
TSP Applications

- transportation and logistics (school buses, meals on wheels, airplane schedules, etc.)
- drilling printed circuit boards
- analyzing crystal structure
- overhauling gas turbine engines
- clustering data

tsp.gatech.edu/apps/index.html
iris.gmu.edu/~khoffman/papers/trav_salesman.html
Brute Force for Combinatorial Problems

- Knapsack Problem:
 - There are \(n \) different items in a store
 - Item \(i \) weighs \(w_i \) pounds and is worth \(v_i \)
 - A thief breaks in
 - He can carry up to \(W \) pounds in his knapsack
 - What should he take to maximize his haul?

- Solution: Consider every possible subset of items, calculate total value and total weight and discard if more than \(W \); then choose remaining subset with maximum total value.

- Takes \(\Omega(2^n) \) time
Knapsack Applications

- Least wasteful way to use raw materials
- Selecting capital investments and financial portfolios
- Generating keys for the Merkle-Hellman cryptosystem

Knapsack Example

- item 1: 7 lbs, $42
- item 2: 3 lbs, $12
- item 3: 4 lbs, $40
- item 4: 5 lbs, $25
- W = 10

- need to check 16 possibilities

<table>
<thead>
<tr>
<th>subset</th>
<th>total weight</th>
<th>total value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>{1}</td>
<td>7</td>
<td>$42</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
<td>$12</td>
</tr>
<tr>
<td>{3}</td>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>{4}</td>
<td>5</td>
<td>$25</td>
</tr>
<tr>
<td>{1,2}</td>
<td>10</td>
<td>$54</td>
</tr>
<tr>
<td>{1,3}</td>
<td>11</td>
<td>infeasible</td>
</tr>
<tr>
<td>{1,4}</td>
<td>12</td>
<td>infeasible</td>
</tr>
<tr>
<td>{2,3}</td>
<td>7</td>
<td>$52</td>
</tr>
<tr>
<td>{2,4}</td>
<td>8</td>
<td>$37</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Brute Force For Closest Pair

Closest-Pair Problem:
- Given n points in d-dimensional space, find the two that are closest

Applications:
- airplanes close to colliding
- which post offices should be closed
- which DNA sequences are most similar
Brute Force For Closest Pair

- Brute-force Solution (for 2-D case):
 - compute distances between all pairs of points
 - $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$
 - scan all distances to find smallest

- Running time: $\Theta(n^2)$, assuming each numerical operation is constant time (including square root?)

- Improvements:
 - drop the square root
 - don’t compute distance for same 2 points twice
Brute Force For Convex Hull

- Convex Hull Problem: Given a set of points in 2-D, find the smallest convex polygon s.t. each point in the set is enclosed by the polygon
 - polygon: sequence of line segments that ends where it begins
 - convex: all points on a line segment between 2 points in the polygon are also in the polygon
Convex Hull Applications

- In computer graphics or robot planning, a simple way to check that two (possibly complicated) objects are not colliding is to compute their convex hulls and then check if the hulls intersect.
- Estimate size of geographic range of a species, based on observations (geocat.kew.org/about)
Brute Force For Convex Hull

- Key idea for solution: line passing through \((x_i, y_i)\) and \((x_j, y_j)\) is:
 \[ax + by = c \]
 where \(a = (y_j - y_i), b = (x_i - x_j), c = x_i y_j - y_i x_j \)
- The 2 pts are on the convex hull iff all other pts are on same side of this line:
Brute Force For Convex Hull

- For each (distinct) pair of points in the set, compute \(a\), \(b\), and \(c\) to define the line \(ax + by = c\).
 - For each other point, plug its \(x\) and \(y\) coordinates into the expression \(ax + by - c\).
 - If they all have the same sign (all positive or all negative), then this pair of points is part of the convex hull.

- Takes \(\Theta(n^3)\) time.
Brute Force for Two Numeric Problems

- Problem: Compute a^n
 - Solution: Multiply a by itself $n-1$ times
 - Takes $\Theta(n)$ time, assuming each multiplication takes constant time.

- Problem: Multiply two nxn matrices A and B to create product matrix C
 - Solution: Follow the definition, which says the (i,j) entry of C is $\sum a_{ik} \times b_{kj}$, $k = 1$ to n
 - Takes $\Theta(n^3)$ time, assuming each basic operation takes constant time.
Brute Force/Exhaustive Search Summary

- sorting: selection sort, bubble sort
- searching: sequential search
- graphs: BFS, DFS
- combinatorial problems: check all possibilities for TSP and knapsack
- geometric: check all possibilities for closest pair and for convex hull
- numerical: follow definition to compute a^n or matrix multiplication
Applications of DFS

Now let’s go more in depth on two applications of depth-first search:

- topological sort
- finding strongly connected components of a graph
Depth-First Search

- **Input:** $G = (V,E)$
- for each vertex u in V do
 - mark u as unvisited
 - $\text{parent}[u] := \text{nil}$
- $\text{time} := 0$
- for each unvisited vertex u in V do
 - $\text{parent}[u] := u$ // a root
 - call recursiveDFS(u)

- **recursiveDFS(u):**
 - mark u as visited
 - $\text{time}++$
 - $\text{disc}[u] := \text{time}$
 - for each unvisited outgoing neighbor v of u do
 - $\text{parent}[v] := u$
 - call recursiveDFS(v)
 - $\text{time}++$
 - $\text{fin}[u] := \text{time}$
Nested Intervals

- Let interval for vertex v be $[\text{disc}[v], \text{fin}[v]]$.
- **Fact:** For any two vertices, either one interval precedes the other or one is enclosed in the other.
 - because recursive calls are nested
- **Corollary:** v is a descendant of u in the DFS forest if and only if v's interval is inside u's interval.
Classifying Edges

- Consider edge \((u, v)\) in directed graph \(G = (V, E)\) w.r.t. DFS forest
 - **tree edge**: \(v\) is a child of \(u\)
 - **back edge**: \(v\) is an ancestor of \(u\)
 - **forward edge**: \(v\) is a descendant of \(u\) but not a child
 - **cross edge**: none of the above
Example of Classifying Edges

In DFS forest:
- Tree edges:
 - a -> b
 - b -> c
 - c -> d
 - d -> e
- Back edges:
 - b -> a
- Cross edges:
 - b -> d

Not in DFS forest:
- Tree edges:
 - c -> f
 - f -> c
 - e -> d

Edges:
- Forward:
 - a -> b
 - b -> d

Graph:
- Nodes: a, b, c, d, e, f
- Edges:
 - a -> b
 - b -> c
 - c -> d
 - d -> e
 - b -> a
 - b -> d
 - c -> f
 - f -> c
 - e -> d
DFS Application: Topological Sort

- Given a directed acyclic graph (DAG), find a linear ordering of the vertices such that if (u,v) is an edge, then u precedes v.
- DAG indicates precedence among events:
 - events are graph vertices, edge from u to v means event u has precedence over event v
- Partial order because not all events have to be done in a certain order
Precedence Example

- Tasks that have to be done to eat breakfast:
 - get glass, pour juice, get bowl, pour cereal, pour milk, get spoon, eat.

- Certain events must happen in a certain order (ex: get bowl before pouring milk)

- For other events, it doesn't matter (ex: get bowl and get spoon)
Precedence Example

Order: glass, juice, bowl, cereal, milk, spoon, eat.
Why Acyclic?

Why must directed graph be acyclic for the topological sort problem?
Otherwise, no way to order events linearly without violating a precedence constraint.
Idea for Topological Sort Alg.

- Run DFS on the input graph

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat
Topological Sort Algorithm

input: DAG G = (V,E)
1. call DFS on G to compute finish[v] for all vertices v
2. when each vertex's recursive call finishes, insert it on the front of a linked list
3. return the linked list

Running Time: O(V+E)
Correctness of T.S. Algorithm

Show that if (u,v) is an edge, then v finishes before u finishes. Thus the algorithm correctly orders u before v.

Case 1: u is discovered before v is discovered. By the way DFS works, u does not finish until v is discovered and v finishes.

Then v finishes before u finishes.
Correctness of T.S. Algorithm

Show that if \((u,v)\) is an edge, then \(v\) finishes before \(u\) finishes. Thus the algorithm correctly orders \(u\) before \(v\).

\[u \rightarrow v \]

Case 2: \(v\) is discovered before \(u\) is discovered. Suppose \(u\) finishes before \(v\) finishes (i.e., \(u\) is nested inside \(v\)).

Show this is impossible...
Correctness of T.S. Algorithm

- v is discovered but not yet finished when u is discovered.
- Then u is a descendant of v.
- But that would make (u,v) a back edge and a DAG cannot have a back edge (the back edge would form a cycle).
- Thus v finishes before u finishes.
DFS Application: Strongly Connected Components

- Consider a directed graph.
- A strongly connected component (SCC) of the graph is a maximal set of vertices with a (directed) path between every pair of vertices.
- Problem: Find all the SCCs of the graph.
What Are SCCs Good For?

- Packaging software modules:
 - Construct directed graph of which modules call which other modules
 - A SCC is a set of mutually interacting modules
 - Pack together those in the same SCC

- Solving the “2-satisfiability problem”, which in turn is used to solve various geometric placement problems (graph labeling, VLSI design), as well as data clustering and scheduling

www.cs.princeton.edu/courses/archive/fall07/cos226/lectures.html

wikipedia
SCC Example

four SCCs
How Can DFS Help?

- Suppose we run DFS on the directed graph.
- All vertices in the same SCC are in the same DFS tree.
- But there might be several different SCCs in the same DFS tree.
 - Example: start DFS from vertex h in previous graph
Main Idea of SCC Algorithm

- DFS tells us which vertices are reachable from the roots of the individual trees
- Also need information in the "other direction": is the root reachable from its descendants?
- Run DFS again on the "transpose" graph (reverse the directions of the edges)
SCC Algorithm

input: directed graph $G = (V,E)$

1. call DFS(G) to compute finishing times
2. compute G^T // transpose graph
3. call DFS(G^T), considering vertices in decreasing order of finishing times
4. each tree from Step 3 is a separate SCC of G
SCC Algorithm Example

input graph - run DFS
After Step 1

Order of vertices for Step 3: f, g, h, a, e, b, d, c
After Step 2

transposed input graph - run DFS with specified order of vertices
After Step 3

SCCs are \{f,h,g\} and \{a,e\} and \{b,c\} and \{d\}.
Running Time of SCC Algorithm

- Step 1: $O(V+E)$ to run DFS
- Step 2: $O(V+E)$ to construct transpose graph, assuming adjacency list rep.
- Step 3: $O(V+E)$ to run DFS again
- Step 4: $O(V)$ to output result
- Total: $O(V+E)$
Correctness of SCC Algorithm

- Proof uses concept of component graph, G^{SCC}, of G.
- Vertices are the SCCs of G; call them C_1, C_2, ..., C_k
- Put an edge from C_i to C_j iff G has an edge from a vertex in C_i to a vertex in C_j
Example of Component Graph

based on example graph from before
Facts About Component Graph

- **Claim:** G^{SCC} is a directed acyclic graph.
- **Why?**
 - Suppose there is a cycle in G^{SCC} such that component C_i is reachable from component C_j and vice versa.
 - Then C_i and C_j would not be separate SCCs.
Facts About Component Graph

- Consider any component C during Step 1 (running DFS on G)
- Let \(d(C) \) be *earliest* discovery time of any vertex in C
- Let \(f(C) \) be *latest* finishing time of any vertex in C
- **Lemma**: If there is an edge in \(G^{\text{SCC}} \) from component \(C' \) to component C, then \(f(C') > f(C) \).
Proof of Lemma

- **Case 1:** $d(C') < d(C)$.
- Suppose x is first vertex discovered in C'.
- By the way DFS works, all vertices in C' and C become descendants of x.
- Then x is last vertex in C' to finish and finishes after all vertices in C.
- Thus $f(C') > f(C)$.
Proof of Lemma

Case 2: $d(C') > d(C)$.

Suppose y is first vertex discovered in C.

By the way DFS works, all vertices in C become descendants of y.

Then y is last vertex in C to finish.

Since $C' \rightarrow C$, no vertex in C' is reachable from y, so y finishes before any vertex in C' is discovered.

Thus $f(C') > f(C)$.
SCC Algorithm is Correct

Prove this theorem by induction on number of trees found in Step 3 (running DFS on G^T).

Hypothesis is that the first k trees found constitute k SCCs of G.

Basis: $k = 0$. No work to do!
SCC Algorithm is Correct

- **Induction:** Assume the first \(k \) trees constructed in Step 3 (running DFS on \(G^T \)) correspond to \(k \) SCCs; consider the \((k+1)\)st tree.

- Let \(u \) be the root of the \((k+1)\)st tree.

- \(u \) is part of some SCC, call it \(C \).

- By the inductive hypothesis, \(C \) is not one of the \(k \) SCCs already found and all so vertices in \(C \) are unvisited when \(u \) is discovered.
 - By the way DFS works, all vertices in \(C \) become part of \(u \)'s tree.
SCC Algorithm is Correct

- Show *only* vertices in C become part of u's tree. Consider an outgoing edge from C.
SCC Algorithm is Correct

- By lemma, in Step 1 (running DFS on G) the last vertex in C' finishes after the last vertex in C finishes.
- Thus in Step 3 (running DFS on G^T), some vertex in C' is discovered before any vertex in C is discovered.
- Thus in Step 3, all of C', including w, is already visited before u's DFS tree starts.