General Idea of Transform & Conquer

1. Transform the original problem instance into a different problem instance
2. Solve the new instance
3. Transform the solution of the new instance into the solution for the original instance
Varieties of Transform & Conquer
[Levitin]

- Transform to a simpler or more convenient instance of the same problem
 - “instance simplification”
- Transform to a different representation of the same instance
 - “representation change”
- Transform to an instance of a different problem with a known solution
 - “problem reduction”
Instance Simplification: Presorting

- Sort the input data first
- This simplifies several problems:
 - checking whether a particular element in an array is unique
 - computing the median and mode (value that occurs most often) of an array of numbers
 - searching for a particular element
 - once array is sorted, we can use the decrease & conquer binary search algorithm
 - used in several convex hull algorithms
Instance Simplification: Solving System of Equations

- A system of n linear equations in n unknowns:
 - $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$
 - \ldots
 - $a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n$

- Cast as a matrix problem:
 - $Ax = b$, where A is $n \times n$ matrix, x and b are n-vectors

- To solve for all the x's, solve $Ax = b$ for x
Motivation for Solving Systems of Linear Equations

- http://aix1.uottawa.ca/~jkhoury/system.html
 - geometry
 - networks
 - heat distribution
 - chemistry
 - economics
 - linear programming
 - games
Solving System of Equations

- One way to solve $Ax = b$ for x:
 - Compute A^{-1}
 - Multiply both sides by A^{-1}
 - $A^{-1}Ax = A^{-1}b$
 - $x = A^{-1}b$

- Drawback is that computing matrix inverses suffers from numerical instability in practice

- Try another approach...
LUP Decomposition

If A is triangular, solving $Ax = b$ for x is easy and fast using successive substitutions (how fast?)

Transform this problem into one involving only triangular matrices

- instance simplification!

Find

- $n \times n$ matrix L with all 1’s on diagonal and all 0’s above the diagonal (“unit lower-triangular”)
- $n \times n$ matrix U with all 0’s below the diagonal (“upper-triangular”)
- $n \times n$ matrix P of 0’s and 1’s with exactly one 1 in each row and each column (“permutation matrix”)

such that $PA = LU$
Using LUP Decomposition

- We want to solve $Ax = b$.
- Assume we have L, U and P with desired properties so that $PA = LU$
- Multiply both sides of $Ax = b$ by P to obtain $PAX = Pb$
 - Since P is a permutation matrix, Pb is easy to compute and is just a reordering of the vector b, call it b'
- Substitute LU for PA to obtain $LUx = b'$
- Let y be the vector (as of yet unknown) that equals Ux; rewrite as $Ly = b'$
 - although U is known, x is not yet known
- Solve $Ly = b'$ for y
 - since L is triangular, this is easy
- Now that y is known, solve $y = Ux$ for x
 - since U is triangular, this is easy
Solving $Ax = b$ with LUP Decomp.

- Assuming the L, U, and P are given, pseudocode is on p. 817 of [CLRS]
- Running time is $\Theta(n^2)$
- Example: <board>

- Calculating L, U and P is more involved and takes $\Theta(n^3)$ time. (See [CLRS].)
Instance Simplification: Balanced Binary Search Trees

- Transform an unbalanced binary search tree into a balanced binary search tree
- Benefit is guaranteed $O(\log n)$ time for searching, inserting and deleting as opposed to possibility of $\Theta(n)$ time
- Examples:
 - AVL trees
 - red-black trees
 - splay trees
Representation Change: Balanced Search Trees

- Convert a basic binary search tree into a search tree that is more than binary:
 - a node can have more than two children
 - a node can store more than one data item

- Can get improved performance (w.r.t. constant factors)

- Examples:
 - 2-3 trees
 - B-trees
B-Trees: Motivation

- Designed for very large data sets that cannot all fit in main memory at a time
- Instead, data is stored on disk
- **Fact 1:** Disk access is *orders of magnitude slower* than main memory access
- Typically a disk access is needed for each node encountered during operations on a search tree
 - For a balanced binary search tree, this would be about $c \log_2 n$, where c is a small constant and n is number of items
B-Trees: Motivation

- Can we reduce the time?
- Even if not asymptotically, what about reducing the constants?
 - Constants do matter
- Reduce the height by having a bushier tree
 - have more than two children at each node
 - store more than two keys in each node
- Fact 2: Each disk access returns a fixed amount of information (a page).
 - Size is determined by hardware and operating system
 - Typically 512 to 4096 bytes
- Let size of tree node be page size
B-Tree Applications

- Keeping index information for large amounts of data stored on disk
 - databases
 - file systems
B-Tree Definition

- B-tree with minimum degree t is a rooted tree such that
 1. each node has between $t-1$ and $2t-1$ keys, in increasing order (root can have fewer keys)
 2. each non-leaf node has one more child than it has keys
 3. all keys in a node’s i-th subtree lie between the node’s $(i-1)$st key and its i-th key
 4. all leaves have the same depth

- Points 1-3 are generalization of binary search trees to larger branching factor
- Point 4 controls the height
B-Tree Example

- B-tree with minimum degree 2
 1. each node has between 1 and 3 keys, in sorted order
 2. each non-leaf node has 2 to 4 children, one more than number of keys
 3. keys are in proper subtrees
 4. all leaves have depth 1
B-Tree Height

- **Theorem:** Any n-key B-tree with minimum degree t has height $h \leq \log_t((n+1)/2)$.

- Height is still $O(\log n)$ but logarithm base is t instead of 2
 - savings in constant factor of $\log_2 t$, which is substantial since t is generally very large
 - Remember: $\log_2 x = (\log_2 t) \times (\log_t x)$

- **Proof:** Calculate minimum number of keys in a B-tree of height h and solve for h.
Searching in a B-Tree

- Straightforward generalization of searching in a binary search tree

- To search for k, start at root:
 1. Find largest i such that $k \leq i^{th}$ key in current node
 2. If $k = i^{th}$ key then return “found”
 3. Elseif current node is a leaf then return “not found”
 4. Else recurse on root of i^{th} subtree
Running Time of B-Tree Search

- **CPU time:**
 - Line 1 takes $O(t)$ (or $O(\log_2 t)$ if using binary search)
 - Number of recursive calls is $O(\text{height}) = O(\log_t n)$
 - Total is $O(t \log_t n)$

- **Number of disk accesses:**
 - each recursive call requires at most one disk access, to get the next node
 - $O(\log_t n)$ (the height)
B-Tree Insert

To insert a new key, need to

- obey bounds on branching factor / maximum number of keys per node
- keep all leaves at the same depth

Do some examples on a B-tree with minimum degree 2

- each node has 1, 2, or 3 keys
- each node has 2, 3, or 4 children
B-Tree Insert Examples

insert C
B-Tree Insert Examples

insert M

M goes in a full node; split the node in two; promote the median L; insert M
B-Tree Insert Examples

B goes in full leaf, so split leaf and promote median C. C goes in full root, so split root and promote median L to make a new root (only way height increases). But this is a 2-pass algorithm => twice as many disk accesses. To avoid 2 passes, search phase always recurses down to a non-full node...
To insert B, start at root to find proper place; proactively split root since it is full.
B-Tree Insert with One Pass

Recurse to node containing F; since not full no need to split.

Recurse to left-most leaf, where B belongs.
Since it is full, split it, promote the median C to the parent, and insert B.
B-Tree Insert with One Pass

Final result of inserting B.
Splitting a B-Tree Node

split(x,i,y)

input:
- non-full node x
- full node y which is the ith child of x

result:
- split y into two equal size nodes with t-1 keys each
- insert the median key of the old y into x
Splitting a B-Tree Node

\[x: < 2t-1 \text{ keys} \]

\[y: \begin{array}{ccc}
\alpha & m & \beta \\
\end{array} \]

\[\rightarrow \]

\[x: \begin{array}{c}
\alpha \\
\end{array}, \begin{array}{c}
m \\
\end{array}, \begin{array}{c}
\beta \\
\end{array}, \begin{array}{c}
t-1 \text{ keys} \\
\end{array} \]

\[y: \begin{array}{c}
\alpha \\
\end{array}, \begin{array}{c}
\beta \\
\end{array} \]

\[\leq 2t-1 \text{ keys} \]
B-Tree Insert Algorithm

- if root r is full ($2t-1$ keys) then
 - allocate a new node s
 - make s the new root
 - make r the first child of s
 - split($s, 1, r$)
 - insert-non-full(s, k)
- else insert-non-full(r, k)
B-Tree Insert Algorithm (cont’d)

- procedure insert-non-full(x,k):
 - if x is a leaf then
 - insert k in sorted order
 - else
 - find node y that is root of subtree where k belongs
 - if y is full then split it
 - call insert-non-full recursively on correct child of x
 (y if no split,
 1st half of y if split and k < median of y,
 2nd half of y if split and k > median of y)
Running Time of B-Tree Insert

- Same as search:
 - $O(t \log_t n)$ CPU time
 - $O(\log_t n)$ disk access

- Practice (Homework?): insert F, S, Q, K, C, L, H, T, V, W into a B-tree with minimum degree $t = 3$
Deleting from a B-Tree

Pitfalls:

- Be careful that a node does not end up with too few keys
- When deleting from a non-leaf node, need to rearrange the children (remember, number of children must be one greater than the number of keys)
B-Tree Delete Algorithm

delete(x,k): // called initially with x = root

1. if k is in x and x is a leaf then
 delete k from x // we will ensure that x has ≥ t keys

2. if k is in x and x is not a leaf then

```
x  k
  
  y    z
```
B-Tree Delete Algorithm (cont’d)

2(a) if y has \(\geq t \) keys then

- find \(k' = \text{pred}(k) \) // in y’s subtree
- delete(\(y, k' \)) // recursive call
- replace k with \(k' \) in x
B-Tree Delete Algorithm (cont’d)

2(b) else if z has ≥ t keys then

find $k’ = \text{succ}(k)$ // in z’s subtree

delete(z, k’) // recursive call

replace k with $k’$ in x
2(c) else // both y and z have < t keys
merge y, k, z into a new node w
delete(w,k) // recursive call
B-Tree Delete Algorithm (cont’d)

3. if k is not in (internal) node x then
 let y be root of x’s subtree where k belongs
3(a) if y has < t keys but has a neighboring sibling z with ≥ t keys then
 y borrows a key from z via x // note moving subtrees
B-Tree Delete Algorithm (cont’d)

3. if k is not in (internal) node x then
 let y be root of x’s subtree where k belongs
3(b) if y has < t keys and has no neighboring sibling z
 with ≥ t keys then
 merge y with sibling z, using intermediate key in x

whether (a), (b) or neither was done, call delete(y,k)
Behavior of B-Tree Delete

- As long as k has not yet been found, we continue in a single downward pass, with no backtracking.
- If k is found in an internal node, we may have to find pred or succ of k, call it k', delete k' from its old place, and then go back to where k is and replace k with k'.
- However, finding and deleting k' can be done in a single downward pass, since k' will be in a leaf (basic property of search trees).
- $O(\log_t n)$ disk access
- $O(t \log_t n)$ CPU time
Problem Reduction: Computing Least Common Multiple

- \(\text{lcm}(m,n) \) is the smallest integer that is divisible by both \(m \) and \(n \)
 - Ex: \(\text{lcm}(11,5) = 55 \) and \(\text{lcm}(24,60) = 120 \)

- One algorithm for finding \(\text{lcm} \): multiply all common factors of \(m \) and \(n \), all factors of \(m \) not in \(n \), and all factors of \(n \) not in \(m \)
 - Ex: \(24 = 2*2*2*3, 60 = 2*2*3*5 \),
 \(\text{lcm}(24,60) = (2*2*3)*2*5 = 120 \)

- But how to find prime factors of \(m \) and \(n \)?
Reduce Least Common Multiple to Greatest Common Denominator

- Try another approach.
- \(\gcd(m,n) \) is product of all common factors of \(m \) and \(n \)
- So \(\gcd(m,n) \cdot \text{lcm}(m,n) \) includes every factor in both \(\gcd \) and \(\text{lcm} \) twice, every factor in \(m \) but not \(n \) exactly once, and every factor in \(n \) but not \(m \) exactly once
- Thus \(\gcd(m,n) \cdot \text{lcm}(m,n) = m \cdot n \).
- I.e., \(\text{lcm}(m,n) = \frac{m \cdot n}{\gcd(m,n)} \)
- So if we can solve \(\gcd \), we can solve \(\text{lcm} \)
- And we can solve \(\gcd \) with Euclid’s algorithm
Problem Reduction: Computing Number of Paths in a Graph

How many paths of length 3 are there in this graph between b and d?
Computing Number of Paths in a Graph

Claim: Adjacency matrix A to the k-th power gives number of paths of length (exactly) k between all pairs

Reduce problem of computing number of paths to problem of multiplying matrices!
Proof of Claim

- **Basis:** $A^1 = A$ gives all paths of length 1

- **Induction:** Suppose A^k gives all paths of length k. Show for $A^{k+1} = A^k A$.

- (i,j) entry of A^{k+1} is sum, over all vertices h, of (i,h) entry of A^k times (h,j) entry of A:
Computing Number of Paths of length k

- We have to compute A^k.
- Do $k-1$ matrix multiplications
 - brute force or Strassen’s
 - $O(kn^3)$ or $O(kn^{2.8\ldots})$ running time
- Or, do successive doubling (A^2, A^4, A^8, A^{16},...)
 - about $\log_2 k$ multiplications
 - $O(n^3\log k)$ or $O(n^{2.8\ldots\log k})$ running time
Problem Reduction Tool: Linear Programming

- Many problems related to finding an optimal solution for something can be reduced to an instance of the linear programming problem:
 - optimize a linear function of several variables subject to constraints
 - each constraint is a linear equation or linear inequality
Linear Program Example

- An organization wants to invest $100 million in stocks, bonds, and cash.
- Assume interest rates are:
 - stocks: 10%
 - bonds: 7%
 - cash: 3%
- Institutional restrictions:
 - amount in stock cannot be more than a third of amount in bonds
 - amount in cash must be at least a quarter of the amount in stocks and bonds
- How should money manager invest to maximize return?
Mathematical Formulation of the Example

- $x = \text{amount in stocks (in millions of dollars)}$
- $y = \text{amount in bonds}$
- $z = \text{amount in cash}$

maximize $(.10)*x + (.70)*y + (.03)*z$

subject to
- $x+y+z = 100$
- $x \leq y/3$
- $z \geq (x+y)/4$
- $x \geq 0, y \geq 0, z \geq 0$
General Linear Program

maximize (or minimize) $c_1x_1 + \ldots + c_nx_n$

subject to

$a_{11}x_1 + \ldots + a_{1n}x_n \leq (or \geq or =) b_1$

$a_{21}x_1 + \ldots + a_{2n}x_n \leq (or \geq or =) b_2$

\ldots

$a_{m1}x_1 + \ldots + a_{mn}x_n \leq (or \geq or =) b_m$

$x_1 \geq 0, \ldots, x_n \geq 0$
Linear Programs with 2 Variables

maximize $x_1 + x_2$

subject to

$4x_1 - x_2 \leq 8$

$2x_1 + x_2 \leq 10$

$5x_1 - 2x_2 \geq -2$

$x_1, x_2 \geq 0$

feasible region

$x_1 = 2, x_2 = 6$ is optimal solution
Solving a Linear Program

Given a linear program, there are 3 possibilities:

- the feasible region is empty
- the feasible region and the optimal value are unbounded
- the feasible region is bounded and there is an optimal value

Three ways to solve a linear program: most common in practice

- simplex method: travel around the feasible region from corner to corner until finding optimal
 - worst-case exponential time, average case is polynomial time
- ellipsoid method: a divide-and-conquer approach
 - polynomial worst-case, but slow in practice
- interior point methods
 - polynomial worst-case, reasonable in practice
Use of Linear Programming

- Later we will study algorithms to solve linear programs.
- Now we’ll give some examples of converting other problems into linear programs.
Reducing a Problem to a Linear Program

- What unknowns are involved?
 - These will be the variables x_1, x_2, \ldots

- What quantity is to be minimized or maximized? How to express this quantity in terms of the variables?
 - This will be the objective function

- What are the constraints on the problem and how to state them w.r.t. the variables?
 - Constraints must be linear
Reducing a Problem to a Linear Program: Example

- A tailor can sew pants and shirts.
- It takes him 2.5 hours to sew a pair of pants and 3.5 hours to sew a shirt.
- A pair of pants uses 3 yards of fabric and a shirt uses 2 yards of fabric.
- The tailor has 40 hours available for sewing and has 50 yards of fabric.
- He makes a profit of $10 per pair of pants and $15 per shirt.
- How many pants and how many shirts should he sew to maximize his profit?
Reducing a Problem to a Linear Program: Example Solution

- **Variables:**
 - $x_1 = \text{number of pants to sew}$
 - $x_2 = \text{number of shirts to sew}$

- **Objective function:**
 - maximize $10x_1 + 15x_2$

- **Constraints:**
 - time: $(2.5)x_1 + (3.5)x_2 \leq 40$
 - fabric: $3x_1 + 2x_2 \leq 50$
 - nonnegativity: $x_1 \geq 0$, $x_2 \geq 0$
Knapsack Problem as a Linear Program

- Suppose thief can steal part of an object
 - “fractional” knapsack problem
- For each item j, $1 \leq j \leq n$,
 - v_j is value of (entire) item j
 - w_j is weight of (entire) item j
 - x_j is fraction of item j that is taken
- Maximize $v_1x_1 + \ldots + v_nx_n$
- Subject to
 - $w_1x_1 + \ldots w_nx_n \leq W$ (knapsack limit)
 - $0 \leq x_j \leq 1$, for $j = 1,\ldots,n$
A Shortest Path Problem as a Linear Program

- What is the shortest path distance from s to t in weighted directed graph $G = (V,E,w)$?
- For each v in V, let d_v be a variable modeling the distance from s to v.

maximize d_t
subject to

$d_v \leq d_u + w(u,v)$ for each (u,v) in E

$d_s = 0$