CH 7.
TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO
OUTLINE AND READING

• General Trees (Ch. 7.1)
• Tree Traversals (Ch. 7.2)
• Binary Trees (Ch. 7.3)
WHAT IS A TREE

• In computer science, a tree is an abstract model of a hierarchical structure

• A tree consists of nodes with a parent-child relation

• Applications:
 • Organization charts
 • File systems
 • Programming environments
A tree T is a set of nodes storing elements in a parent-child relationship with the following properties:

- If T is nonempty, it has a special node called the root of T, that has no parent.
- Each node v of T different from the root has a unique parent node w; every node with parent w is a child of w.

Note that trees can be empty and can be defined recursively!

Note each node can have zero or more children.
TREE TERMINOLOGY

- **Root**: node without parent (A)
- **Internal node**: node with at least one child (A, B, C, F)
- **Leaf** (aka External node): node without children (E, I, J, K, G, H, D)
- **Ancestors** of a node: parent, grandparent, great-grandparent, etc.
- **Siblings** of a node: Any node which shares a parent
- **Depth** of a node: number of ancestors
- **Height** of a tree: maximum depth of any node (3)
- **Descendant** of a node: child, grandchild, great-grandchild, etc.
- **Subtree**: tree consisting of a node and its descendants
- **Edge**: a pair of nodes \((u, v)\) such that \(u\) is a parent of \(v\) \(((C, H))\)
- **Path**: A sequence of nodes such that any two consecutive nodes form an edge\((A, B, F, J)\)
- **A tree is ordered** when there is a linear ordering defined for the children of each node
EXERCISE

• Answer the following questions about the tree shown on the right:
 • What is the size of the tree (number of nodes)?
 • Classify each node of the tree as a root, leaf, or internal node
 • List the ancestors of nodes B, F, G, and A. Which are the parents?
 • List the descendants of nodes B, F, G, and A. Which are the children?
 • List the depths of nodes B, F, G, and A.
 • What is the height of the tree?
 • Draw the subtrees that are rooted at node F and at node K.
TREE ADT

- We use positions to abstract nodes, as we don’t want to expose the internals of our structure.

Position functions:
- `p.parent()` – return parent
- `p.children()` – list of children positions
- `p.isRoot()`
- `p.isLeaf()`

Tree functions:
- `size()`
- `empty()`
- `root()` – return position for root
- `positions()` – return list of all positions

- Additional functions may be defined by data structures implementing the Tree ADT, e.g., `begin()` and `end()`
A LINKED STRUCTURE FOR GENERAL TREES

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT
PREORDER TRAVERSAL

- A traversal visits the nodes of a tree in a systematic manner.
- In a preorder traversal, a node is visited before its descendants.
- Application: print a structured document.

Algorithm `preOrder(v)`
1. `visit(v)`
2. `for each` child `w` of `v`
3. `preOrder(w)`

Make Money Fast!

1. Motivations
 - 1.1 Greed
 - 1.2 Avidity

2. Methods
 - 2.1 Stock Fraud
 - 2.2 Ponzi Scheme
 - 2.3 Bank Robbery

References
EXERCISE: PREORDER TRAVERSAL

- In a *preorder traversal*, a node is visited before its descendants.
- List the nodes of this tree in preorder traversal order.

Algorithm `preOrder(v)`
1. `visit(v)`
2. for each child `w` of `v`
3. `preOrder(w)`
POSTORDER TRAVERSAL

• In a **postorder traversal**, a node is visited **after its descendants**

• Application: compute space used by files in a directory and its subdirectories

Algorithm `postOrder(v)`

1. for each child `w` of `v`
2. `postOrder(w)`
3. `visit(v)`
EXERCISE: POSTORDER TRAVERSAL

• In a postorder traversal, a node is visited after its descendants
• List the nodes of this tree in postorder traversal order.

Algorithm postOrder(ν)
1. for each child w of ν
2. postOrder(w)
3. visit(ν)
A binary tree is a tree with the following properties:
- Each internal node has two children
- The children of a node are an ordered pair

We call the children of an internal node left child and right child.

If a child has only one child, the tree is improper.

Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree.

Applications:
- Arithmetic expressions
- Decision processes
- Searching
ARITHMETIC EXPRESSION TREE

• Binary tree associated with an arithmetic expression
 • Internal nodes: operators
 • Leaves: operands

• Example: arithmetic expression tree for the expression \((2 \times (a - 1) + (3 \times b))\)
DECISION TREE

- Binary tree associated with a decision process
 - Internal nodes: questions with yes/no answer
 - Leaves: decisions

- Example: dining decision

```
Want a fast meal?

Yes

How about coffee?

Yes

Starbucks

No

Spike’s

No

On expense account?

Yes

Al Forno

No

Café Paragon
```
PROPERTIES OF BINARY TREES

Notation
- n number of nodes
- l number of leaves
- i number of internal nodes
- h height

Properties:
- $l = i + 1$
- $n = 2l - 1$
- $h \leq i$
- $h \leq \frac{n-1}{2}$
- $l \leq 2^h$
- $h \geq \log_2 l$
- $h \geq \log_2 (n + 1) - 1$
BINARY TREE ADT

• The Binary Tree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT

• Additional position methods:
 • p.left()
 • p.right()

• Update methods may also be defined by data structures implementing the Binary Tree ADT
A LINKED STRUCTURE FOR BINARY TREES

- A node is represented by an object storing:
 - Element
 - Parent node
 - Left child node
 - Right child node
INORDER TRAVERSAL

• In an *inorder traversal* a node is visited after its left subtree and before its right subtree

• Application: draw a binary tree
 • $x(v) =$ inorder rank of v
 • $y(v) =$ depth of v

Algorithm *inOrder*(v)

1. if v.isInternal()
2. *inOrder*(v.left())
3. visit(v)
4. if v.isInternal()
5. *inOrder*(v.right())
EXERCISE: INORDER TRAVERSAL

- In an *inorder traversal* a node is visited after its left subtree and before its right subtree.
- List the nodes of this tree in inorder traversal order.

Algorithm inOrder(v)

1. if v.isInternal()
2. inOrder(v.left())
3. visit(v)
4. if v.isInternal()
5. inOrder(v.right())
EXERCISE: PREORDER & INORDER TRAVERSAL

• Draw a (single) binary tree T, such that
 • Each internal node of T stores a single character
 • A preorder traversal of T yields EXAMFUN
 • An inorder traversal of T yields MAFXUEN
Algorithm `printExpression(v)`

1. if `v.isInternal()`
2. print(`(``)
3. `printExpression(v.left())`
4. `print(v.element())`
5. if `v.isInternal()`
6. `printExpression(v.right())`
7. `print(``)``

```
(2 × (a − 1)) + (3 × b)
```
APPLICATION
EVALUATE ARITHMETIC EXPRESSIONS

• Specialization of a postorder traversal
 • recursive method returning the value of a subtree
 • when visiting an internal node, combine the values of the subtrees

Algorithm evalExpr(v)
1. if v.isExternal()
2. return v.element()
3. x ← evalExpr(v.left())
4. y ← evalExpr(v.right())
5. ◦ ← operator stored at v
6. return x ◦ y
EXERCISE
ARITHMETIC EXPRESSIONS

• Draw an expression tree that has
 • Four leaves, storing the values 1, 5, 6, and 7
 • 3 internal nodes, storing operations +, -, *, /
 operators can be used more than once, but each internal node stores only one
 • The value of the root is 21
EULER TOUR TRAVERSAL

• Generic traversal of a binary tree
• Includes as special cases the preorder, postorder and inorder traversals
• Walk around the tree and visit each node three times:
 • on the left (preorder)
 • from below (inorder)
 • on the right (postorder)
Algorithm eulerTour(\(v\))
1. left_visit(\(v\))
2. if \(v\).isInternal()
3. eulerTour(\(v\).left())
4. bottom_visit(\(v\))
5. if \(v\).isInternal()
6. eulerTour(\(v\).right())
7. right_visit(\(v\))
APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an Euler Tour traversal
 • Left-visit: if node is internal, print “(”
 • Bottom-visit: print value or operator stored at node
 • Right-visit: if node is internal, print “)”

Algorithm printExpression(𝑣)
1. if 𝑣. isExternal()
2. print 𝑣. element()
3. else
4. print “(”
5. printExpression(𝑣. left())
6. print operator at 𝑣
7. printExpression(𝑣. right())
8. print “)”

((2 × (a – 1)) + (3 × b))
Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one.
INTERVIEW QUESTION 2

• Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked lists).