CHAPTER 11
SORTING, SETS, AND SELECTION

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO
MERGE SORT

```
7  2  9  4  \rightarrow  2  4  7  9
```

```
7  2  \rightarrow  2  7
```

```
9  4  \rightarrow  4  9
```

```
7  \rightarrow  7
2  \rightarrow  2
9  \rightarrow  9
4  \rightarrow  4
```
MERGE-SORT

- **Merge-sort** is based on the **divide-and-conquer** paradigm. It consists of three steps:
 - **Divide:** partition input sequence S into two sequences S_1 and S_2 of about $\frac{n}{2}$ elements each.
 - **Recur:** recursively sort S_1 and S_2.
 - **Conquer:** merge S_1 and S_2 into a sorted sequence.

Algorithm `mergeSort(S, C)`

Input: Sequence S of n elements,
Comparator C

Output: Sequence S sorted according to C

1. if S.size() > 1
2. $(S_1, S_2) \leftarrow$ partition$(S, \frac{n}{2})$
3. $S_1 \leftarrow$ mergeSort(S_1, C)
4. $S_2 \leftarrow$ mergeSort(S_2, C)
5. $S \leftarrow$ merge(S_1, S_2)
6. return S
Divide and Conquer Algorithms
Analysis with Recurrence Equations

• Divide-and-conquer is a general algorithm design paradigm:
 • Divide: divide the input data S into k (disjoint) subsets S_1, S_2, \ldots, S_k
 • Recur: solve the subproblems recursively
 • Conquer: combine the solutions for S_1, S_2, \ldots, S_k into a solution for S

• The base case for the recursion are subproblems of constant size

• Analysis can be done using recurrence equations (relations)
When the size of all subproblems is the same (frequently the case) the recurrence equation representing the algorithm is:

\[T(n) = D(n) + kT\left(\frac{n}{c}\right) + C(n) \]

Where

- \(D(n) \) is the cost of dividing \(S \) into the \(k \) subproblems \(S_1, S_2, ..., S_k \)
- There are \(k \) subproblems, each of size \(\frac{n}{c} \) that will be solved recursively
- \(C(n) \) is the cost of combining the subproblem solutions to get the solution for \(S \)
EXERCISE
RECURRANCE EQUATION SETUP

• Algorithm – transform multiplication of two n-bit integers I and J into multiplication of $(\frac{n}{2})$-bit integers and some additions/shifts

1. Where does recursion happen in this algorithm?
2. Rewrite the step(s) of the algorithm to show this clearly.

Algorithm multiply(I, J)
Input: n-bit integers I, J
Output: $I * J$
1. if $n > 1$
2. Split I and J into high and low order halves: I_h, I_l, J_h, J_l
3. $x_1 ← I_h * J_h; x_2 ← I_h * J_l; x_3 ← I_l * J_h; x_4 ← I_l * J_l$
4. $Z ← x_1 * 2^n + x_2 * 2^n + x_3 * 2^n + x_4$
5. else
6. $Z ← I * J$
7. return Z
EXERCISE
RECURRENCE EQUATION SETUP

- Algorithm – transform multiplication of two \(n \)-bit integers \(I \) and \(J \) into multiplication of \(\left(\frac{n}{2} \right) \)-bit integers and some additions/shifts

3. Assuming that additions and shifts of \(n \)-bit numbers can be done in \(O(n) \) time, describe a recurrence equation showing the running time of this multiplication algorithm

Algorithm multiply(I, J)

Input: \(n \)-bit integers \(I, J \)

Output: \(I \times J \)

1. if \(n > 1 \)
2. Split \(I \) and \(J \) into high and low order halves: \(I_h, I_l, J_h, J_l \)
3. \(x_1 \leftarrow \text{multiply}(I_h, J_h); x_2 \leftarrow \text{multiply}(I_h, J_l); x_3 \leftarrow \text{multiply}(I_l, J_h); x_4 \leftarrow \text{multiply}(I_l, J_l) \)
4. \(Z \leftarrow x_1 \times 2^n + x_2 \times 2^n + x_3 \times 2^n + x_4 \)
5. else
6. \(Z \leftarrow I \times J \)
7. return \(Z \)
EXERCISE

RECURRENCE EQUATION SETUP

• Algorithm – transform multiplication of two \(n\)-bit integers \(I\) and \(J\) into multiplication of \(\left(\frac{n}{2}\right)\)-bit integers and some additions/shifts

• The recurrence equation for this algorithm is:
 • \(T(n) = 4T\left(\frac{n}{2}\right) + O(n)\)
 • The solution is \(O(n^2)\) which is the same as naïve algorithm

Algorithm \(\text{multiply}(I, J)\)

Input: \(n\)-bit integers \(I, J\)

Output: \(I \times J\)

1. if \(n > 1\)
2. Split \(I\) and \(J\) into high and low order halves: \(I_h, I_l, J_h, J_l\)
3. \(x_1 \leftarrow \text{multiply}(I_h, J_h); \ x_2 \leftarrow \text{multiply}(I_h, J_l); \ x_3 \leftarrow \text{multiply}(I_l, J_h); \ x_4 \leftarrow \text{multiply}(I_l, J_l)\)
4. \(Z \leftarrow x_1 \times 2^n + x_2 \times 2^{\frac{n}{2}} + x_3 \times 2^{\frac{n}{2}} + x_4\)
5. else
6. \(Z \leftarrow I \times J\)
7. return \(Z\)
Now, back to MergeSort...

- The running time of Merge Sort can be expressed by the recurrence equation:
 \[T(n) = 2T\left(\frac{n}{2}\right) + M(n) \]
- We need to determine \(M(n) \), the time to merge two sorted sequences each of size \(\frac{n}{2} \).

Algorithm `mergeSort(S, C)`

Input: Sequence \(S \) of \(n \) elements, Comparator \(C \)

Output: Sequence \(S \) sorted according to \(C \)

1. if \(S\.size() > 1 \)
2. \((S_1, S_2) \leftarrow \text{partition}(S, \frac{n}{2})\)
3. \(S_1 \leftarrow \text{mergeSort}(S_1, C)\)
4. \(S_2 \leftarrow \text{mergeSort}(S_2, C)\)
5. \(S \leftarrow \text{merge}(S_1, S_2)\)
6. return \(S \)
MERGING TWO SORTED SEQUENCES

• The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B

• Merging two sorted sequences, each with $\frac{n}{2}$ elements and implemented by means of a doubly linked list, takes $O(n)$ time
 * $M(n) = O(n)$

Algorithm $merge(A, B)$

Input: Sequences A, B with $\frac{n}{2}$ elements each

Output: Sorted sequence of $A \cup B$

1. $S \leftarrow \emptyset$
2. while $\neg A.\text{empty}(\) \land \neg B.\text{empty}(\)$
3. if $A.\text{front}(\) < B.\text{front}(\)$
4. $S.\text{insertBack}(A.\text{front}(\)); A.\text{eraseFront}(\)$
5. else
6. $S.\text{insertBack}(B.\text{front}(\)); B.\text{eraseFront}(\)$
7. while $\neg A.\text{empty}(\)$
8. $S.\text{insertBack}(A.\text{front}(\)); A.\text{eraseFront}(\)$
9. while $\neg B.\text{empty}(\)$
10. $S.\text{insertBack}(B.\text{front}(\)); B.\text{eraseFront}(\)$
11. return S
AND THE COMPLEXITY OF MERGESORT...

• So, the running time of Merge Sort can be expressed by the recurrence equation:

\[
T(n) = 2T\left(\frac{n}{2}\right) + M(n)
\]

\[
= 2T\left(\frac{n}{2}\right) + O(n)
\]

\[
= O(n \log n)
\]

Algorithm `mergeSort(S, C)`

Input: Sequence `S` of `n` elements, Comparator `C`

Output: Sequence `S` sorted according to `C`

1. if `S.size()` > 1
2. `(S_1, S_2) ← partition(S, \(\frac{n}{2}\))`
3. `S_1 ← mergeSort(S_1, C)`
4. `S_2 ← mergeSort(S_2, C)`
5. `S ← merge(S_1, S_2)`
6. return `S`
An execution of merge-sort is depicted by a binary tree:
- Each node represents a recursive call of merge-sort and stores
 - Unsorted sequence before the execution and its partition
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

- Partition

```
 7 2 9 4 | 3 8 6 1
```

Diagram of partitioning process:

- Step 1: 7 2 9 4 | 3 8 6 1
- Step 2: 2 7 4 9 | 3 8 6 1
- Step 3: 2 7 4 9 | 3 8 6 1
- Step 4: 2 7 4 9 | 3 8 6 1
- Step 5: 2 7 4 9 | 3 8 6 1
- Step 6: 2 7 4 9 | 3 8 6 1
EXECUTION EXAMPLE

- Recursive Call, partition

```
  7 2 9 4 | 3 8 6 1
  7 2 | 9 4
  7 2 | 9 4
  7 2 9 4 | 3 8 6 1
```

Diagram:

```
    7 2 9 4 | 3 8 6 1
      7 2 | 9 4
    7 2 9 4 | 3 8 6 1
      7 2 | 9 4
            7 2 | 9 4
```

```
```
```
EXECUTION EXAMPLE

• Recursive Call, partition

7 2 9 4 | 3 8 6 1

7 2 9 4

7 2 | 9 4

7 | 2
EXECUTION EXAMPLE

- Recursive Call, base case
EXECUTION EXAMPLE

• Recursive Call, base case
EXECUTION EXAMPLE

- Merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```

```
7 2 9 4
```
EXECUTION EXAMPLE

• Recursive call, …, base case, merge

```
7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 | 2 → 2 7
9 | 4 → 4 9
```

```
EXECUTION EXAMPLE

• Merge
EXECUTION EXAMPLE

• Recursive call, …, merge, merge
EXECUTION EXAMPLE

- Merge
ANOTHER ANALYSIS OF MERGE-SORT

- The height \(h \) of the merge-sort tree is \(O(\log n) \)
 - at each recursive call we divide in half the sequence,
- The work done at each level is \(O(n) \)
 - At level \(i \), we partition and merge \(2^i \) sequences of size \(\frac{n}{2^i} \)
- Thus, the total running time of merge-sort is \(O(n \log n) \)

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
<th>Cost for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(n/2)</td>
<td>(n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i)</td>
<td>(\frac{n}{2^i})</td>
<td>(n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[\log n \cdot 2^{\log n} = n \cdot \frac{n}{2^{\log n}} = 1 \cdot n \]
Summary of Sorting Algorithms (So Far)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC $O(n)$ BC</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets</td>
</tr>
</tbody>
</table>
QUICK-SORT
Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide:** pick a random element x (called pivot) and partition S into
 - L - elements less than x
 - E - elements equal x
 - G - elements greater than x
- **Recur:** sort L and G
- **Conquer:** join L, E, and $G
ANALYSIS OF QUICK SORT USING RECURRENCE RELATIONS

• Assumption: random pivot expected to give equal sized sublists

• The running time of Quick Sort can be expressed as:

\[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]

• \(P(n) \) - time to run partition() on input of size \(n \)

Algorithm quickSort(S, l, r)

Input: Sequence S, indices l, r

Output: Sequence S with the elements between l and r sorted

1. if \(l \geq r \)
2. return S
3. \(i \leftarrow \text{rand}()\% (r - l) + l \)
 //random integer between l and r
4. \(x \leftarrow S.\text{at}(i) \)
5. \((h, k) \leftarrow \text{partition}(x) \)
6. quickSort(S, l, h - 1)
7. quickSort(S, k + 1, r)
8. return S
PARTITION

• We partition an input sequence as follows:
 • We remove, in turn, each element \(y \) from \(S \) and
 • We insert \(y \) into \(L \), \(E \), or \(G \), depending on the result of
 the comparison with the pivot \(x \)

• Each insertion and removal is at the beginning or at
 the end of a sequence, and hence takes \(O(1) \) time

• Thus, the partition step of quick-sort takes \(O(n) \) time

Algorithm partition(\(S, p \))
Input: Sequence \(S \), position \(p \) of the pivot
Output: Subsequences \(L, E, G \) of the elements of \(S \)
 less than, equal to, or greater than the pivot, respectively

1. \(L, E, G \leftarrow \emptyset \)
2. \(x \leftarrow S.\text{erase}(p) \)
3. while \(\neg S.\text{empty}(\) \)
4. \(y \leftarrow S.\text{eraseFront}(\) \)
5. if \(y < x \)
6. \(L.\text{insertBack}(y) \)
7. else if \(y = x \)
8. \(E.\text{insertBack}(y) \)
9. else // \(y > x \)
10. \(G.\text{insertBack}(y) \)
11. return \(L, E, G \)
SO, THE EXPECTED COMPLEXITY OF QUICK SORT

- Assumption: random pivot expected to give equal sized sublists
- The running time of Quick Sort can be expressed as:
 \[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]
 \[= 2T\left(\frac{n}{2}\right) + O(n) \]
 \[= O(n \log n) \]

Algorithm quickSort\(S, l, r\)

Input: Sequence \(S\), indices \(l, r\)

Output: Sequence \(S\) with the elements between \(l\) and \(r\) sorted

1. if \(l \geq r\)
2. return \(S\)
3. \(i \leftarrow \text{rand}(\)\% (r - l) + l\)
 //random integer between \(l\) and \(r\)
4. \(x \leftarrow S.\text{at}(i)\)
5. \((h, k) \leftarrow \text{partition}(x)\)
6. quickSort\(S, l, h - 1\)
7. quickSort\(S, k + 1, r\)
8. return \(S\)
An execution of quick-sort is depicted by a binary tree:

- Each node represents a recursive call of quick-sort and stores:
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

- Pivot selection

7 2 9 4 3 7 6 1

Diagram showing a tree structure with numbers and segments.
EXECUTION EXAMPLE

• Partition, recursive call, pivot selection
EXECUTION EXAMPLE

• Partition, recursive call, base case
EXECUTION EXAMPLE

- Recursive call, ..., base case, join
EXECUTION EXAMPLE

- Recursive call, pivot selection

```
7 2 9 4 3 7 6 1
2 4 3 1 -> 1 2 3 4
1 -> 1
4 3 -> 3 4
4 -> 4
```

```
7 9 7
```
EXECUTION EXAMPLE

- Partition, ..., recursive call, base case
EXECUTION EXAMPLE

• Join, join
WORST-CASE RUNNING TIME

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
 - One of L and G has size $n - 1$ and the other has size 0
- The running time is proportional to:
 \[n + (n - 1) + \cdots + 2 + 1 = O(n^2) \]
- Alternatively, using recurrence equations:
 \[T(n) = T(n - 1) + O(n) = O(n^2) \]
EXPECTED RUNNING TIME
REMOVING EQUAL SPLIT ASSUMPTION

• Consider a recursive call of quick-sort on a sequence of size s
 • Good call: the sizes of L and G are each less than $\frac{3s}{4}$
 • Bad call: one of L and G has size greater than $\frac{3s}{4}$

• A call is good with probability $1/2$
 • $1/2$ of the possible pivots cause good calls:

```
7 2 9 4 3 7 6 1 9
2 4 3 1
7 9 7 6
```

Good call

```
7 2 9 4 3 7 6 1
1
7 2 9 4 3 7 6
```

Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bad pivots Good pivots Bad pivots
EXPECTED RUNNING TIME

- **Probabilistic Fact:** The expected number of coin tosses required in order to get \(k \) heads is \(2k \) (e.g., it is expected to take 2 tosses to get heads).

- For a node of depth \(i \), we expect
 - \(\frac{i}{2} \) ancestors are good calls
 - The size of the input sequence for the current call is at most \(\left(\frac{3}{4}\right)^\frac{i}{2} n \)

- Therefore, we have
 - For a node of depth \(2 \log_4 n \), the expected input size is one
 - The expected height of the quick-sort tree is \(O(\log n) \)

- The amount of work done at the nodes of the same depth is \(O(n) \)

- Thus, the expected running time of quick-sort is \(O(n \log n) \)

\[\text{total expected time: } O(n \log n) \]
IN-PLACE QUICK-SORT

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have indices less than \(h \)
 - the elements equal to the pivot have indices between \(h \) and \(k \)
 - the elements greater than the pivot have indices greater than \(k \)
- The recursive calls consider
 - elements with indices less than \(h \)
 - elements with indices greater than \(k \)

Algorithm inPlaceQuickSort\((S, l, r)\)

Input: Array \(S \), indices \(l, r \)

Output: Array \(S \) with the elements between \(l \) and \(r \) sorted

1. if \(l \geq r \)
2. return \(S \)
3. \(i \leftarrow \text{rand(} (r - l) \% (r - l) + l \text{)} \)/random integer between \(l \) and \(r \)
4. \(x \leftarrow S[i] \)
5. \((h, k) \leftarrow \text{inPlacePartition}(x) \)
6. inPlaceQuickSort\((S, l, h - 1)\)
7. inPlaceQuickSort\((S, k + 1, r)\)
8. return \(S \)
IN-PLACE PARTITIONING

- Perform the partition using two indices to split \(S \) into \(L \) and \(E \cup G \) (a similar method can split \(E \cup G \) into \(E \) and \(G \)).

\[
\begin{array}{ccccccccccccc}
3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9
\end{array}
\]

(pivot = 6)

- Repeat until \(j \) and \(k \) cross:
 - Scan \(j \) to the right until finding an element \(\geq x \).
 - Scan \(k \) to the left until finding an element \(< x \).
 - Swap elements at indices \(j \) and \(k \).
Summary of Sorting Algorithms (So Far)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ BC</td>
<td>For small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. $O(n \log n)$ AC, BC</td>
<td>Fastest, randomized, in-place</td>
</tr>
<tr>
<td></td>
<td>$O(n^2)$ WC</td>
<td>For large data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets</td>
</tr>
</tbody>
</table>
SORTING LOWER BOUND
COMPARISON-BASED SORTING

• Many sorting algorithms are comparison based.
 • They sort by making comparisons between pairs of objects
 • Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

• Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort \(n \) elements, \(x_1, x_2, \ldots, x_n \).
Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree.
DECISION TREE HEIGHT

- The height of the decision tree is a lower bound on the running time.
- Every input permutation must lead to a separate leaf output.
- If not, some input …$4…5…$ would have the same output ordering as …$5…4…$, which would be wrong.
- Since there are $n! = 1 \times 2 \times \cdots \times n$ leaves, the height is at least $\log(n!)$.
THE LOWER BOUND

• Any comparison-based sorting algorithm takes at least $\log(n!)$ time

\[
\log(n!) \geq \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \log \frac{n}{2}
\]

• That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time.
BUCKET-SORT AND RADIX-SORT

CAN WE SORT IN LINEAR TIME?
BUCKET-SORT

- Let be S be a sequence of n (key, element) items with keys in the range $[0, N - 1]$

- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
 - Phase 1: Empty sequence S by moving each entry into its bucket $B[k]$
 - Phase 2: for $i \leftarrow 0 \ldots N - 1$, move the items of bucket $B[i]$ to the end of sequence S

- Analysis:
 - Phase 1 takes $O(n)$ time
 - Phase 2 takes $O(n + N)$ time

- Bucket-sort takes $O(n + N)$ time

Algorithm $bucketSort(S, N)$

Input: Sequence S of entries with integer keys in the range $[0, N - 1]$

Output: Sequence S sorted in nondecreasing order of the keys

1. $B \leftarrow$ array of N empty sequences
2. for each entry $e \in S$ do
3. $k \leftarrow e$.key()
4. remove e from S and insert it at the end of bucket $B[k]$
5. for $i \leftarrow 0 \ldots N - 1$ do
6. for each entry $e \in B[i]$ do
7. remove e from bucket $B[i]$ and insert it at the end of S
PROPERTIES AND EXTENSIONS

• Properties
 • Key-type
 • The keys are used as indices into an array and cannot be arbitrary objects
 • No external comparator
 • Stable sorting
 • The relative order of any two items with the same key is preserved after the execution of the algorithm

• Extensions
 • Integer keys in the range \([a, b]\)
 • Put entry \(e\) into bucket \(B[k - a]\)
 • String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 • Sort \(D\) and compute the index \(i(k)\) of each string \(k\) of \(D\) in the sorted sequence
 • Put item \(e\) into bucket \(B[i(k)]\)
• Key range [37, 46] – map to buckets [0,9]

Phase 1

Phase 2
LEXICOGRAPHIC ORDER

• Given a list of tuples:

 (7, 4, 6) (5, 1, 5) (2, 4, 6) (2, 1, 4) (5, 1, 6) (3, 2, 4)

• After sorting, the list is in lexicographical order:

 (2, 1, 4) (2, 4, 6) (3, 2, 4) (5, 1, 5) (5, 1, 6) (7, 4, 6)
LEXICOGRAPHIC ORDER FORMALIZED

• A d-tuple is a sequence of d keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the i-th dimension of the tuple
 • Example - the Cartesian coordinates of a point in space is a 3-tuple (x, y, z)

• The lexicographic order of two d-tuples is recursively defined as follows

 $(x_1, x_2, ..., x_d) < (y_1, y_2, ..., y_d) \iff$
 $x_1 < y_1 \lor (x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d))$

 • i.e., the tuples are compared by the first dimension, then by the second dimension, etc.
EXERCISE
LEXICOGRAPHIC ORDER

• Given a list of 2-tuples, we can order the tuples lexicographically by applying a stable sorting algorithm two times:
 (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

• Possible ways of doing it:
 • Sort first by 1st element of tuple and then by 2nd element of tuple
 • Sort first by 2nd element of tuple and then by 1st element of tuple

• Show the result of sorting the list using both options
EXERCISE
LEXICOGRAPHIC ORDER

• (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)
• Using a stable sort,
 • Sort first by 1st element of tuple and then by 2nd element of tuple
 • Sort first by 2nd element of tuple and then by 1st element of tuple

• Option 1:
 • 1st sort: (1,5) (1,2) (1,7) (2,5) (2,3) (2,2) (3,3) (3,2)
 • 2nd sort: (1,2) (2,2) (3,2) (2,3) (3,3) (1,5) (2,5) (1,7) - **WRONG**

• Option 2:
 • 1st sort: (1,2) (3,2) (2,2) (3,3) (2,3) (1,5) (2,5) (1,7)
 • 2nd sort: (1,2) (1,5) (1,7) (2,2) (2,3) (2,5) (3,2) (3,3) - **CORRECT**
LEXICOGRAPHIC-SORT

- Let C_i be the comparator that compares two tuples by their i-th dimension.
- Let $\text{stableSort}(S, C)$ be a stable sorting algorithm that uses comparator C.
- Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension.
- Lexicographic-sort runs in $O(dT(n))$ time, where $T(n)$ is the running time of stableSort.

Algorithm $\text{lexicographicSort}(S)$

Input: Sequence S of d-tuples

Output: Sequence S sorted in lexicographic order.

1. for $i \leftarrow d \ldots 1$ do
2. \hspace{1cm} $\text{stableSort}(S, C_i)$
RADIX-SORT

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension.
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, N - 1]$.
- Radix-sort runs in time $O(d(n + N))$.

Algorithm `radixSort(S, N)`

Input: Sequence S of d-tuples such that

- $(0, ..., 0) \leq (x_1, ..., x_d)$ and
- $(x_1, ..., x_d) \leq (N - 1, ..., N - 1)$

for each tuple $(x_1, ..., x_d)$ in S.

Output: Sequence S sorted in lexicographic order.

1. for $i \leftarrow d$... 1 do
2. set the key k of each entry $(k, (x_1, ..., x_d))$ of S to ith dimension x_i
3. bucketSort(S, N)
EXAMPLE

RADIX-SORT FOR BINARY NUMBERS

• Sorting a sequence of 4-bit integers

 • \(d = 4, N = 2 \) so \(O(d(n + N)) = O(4(n + 2)) = O(n) \)

```
  1001
  0010
  1110
  1101
  0001
  1110
  0001
  1101

  Sort by d=4
  Sort by d=3
  Sort by d=2
  Sort by d=1
```
SUMMARY OF SORTING ALGORITHMS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ BC</td>
<td>For small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. $O(n \log n)$ AC, BC</td>
<td>Fastest, randomized, in-place</td>
</tr>
<tr>
<td></td>
<td>$O(n^2)$ WC</td>
<td>For large data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets</td>
</tr>
<tr>
<td>Radix Sort</td>
<td>$O(d(n + N))$, d #digits, N range of digit values</td>
<td>Fastest, stable only for integers</td>
</tr>
</tbody>
</table>
A set is an ordered data structure similar to an ordered map, except only elements are stored (and yes elements must be unique).

We represent a set by the sorted sequence of its elements.

By specializing the auxiliary methods the generic merge algorithm can be used to perform basic set operations:

- **Union** - \(A \cup B \) – Return all elements which appear in \(A \) or \(B \) (unique only)
- **Intersection** - \(A \cap B \) – Return only elements which appear in both \(A \) and \(B \)
- **Subtraction** - \(A \setminus B \) – Return elements in \(A \) which are not in \(B \)

The running time of an operation on sets \(A \) and \(B \) should be at most \(O(n_A + n_B) \)

Set union:
- if \(a < b \), \(S.\text{insertFront}(a) \)
- if \(b < a \), \(S.\text{insertFront}(b) \)
- else \(a = b \), \(S.\text{insertFront}(a) \)

Set intersection:
- if \(a < b \), \{do nothing\}
- if \(b < a \), \{do nothing\}
- else \(a = b \), \(S.\text{insertBack}(a) \)
GENERIC MERGING

• Generalized merge of two sorted sets \(A \) and \(B \)
• Auxiliary methods (generic functions)
 • \textit{aIsLess}(a, S)
 • \textit{bIsLess}(b, S)
 • \textit{bothAreEqual}(a, b, S)
• Runs in \(O(n_A + n_B) \) time provided the auxiliary methods run in \(O(1) \) time

\begin{algorithm}
\textbf{Algorithm} \textit{genericMerge}(A, B) \\
\textbf{Input}: Sets \(A, B \) (implemented as sequences) \\
\textbf{Output}: Set \(S \) \\
1. \(S \leftarrow \emptyset \) \\
2. \textbf{while} \(\neg A.\text{empty()} \land \neg B.\text{empty()} \) \textbf{do} \\
3. \hspace{0.5cm} \textit{aIsLess}(a, S) //generic action \\
4. \hspace{0.5cm} \textit{A.eraseFront}(); \\
5. \hspace{0.5cm} \textbf{if} \ a < b \\
6. \hspace{1.0cm} \textit{AlsLess}(a, S) //generic action \\
7. \hspace{1.0cm} \textit{A.eraseFront}(); \\
8. \hspace{0.5cm} \textbf{else if} \ b < a \\
9. \hspace{1.0cm} \textit{bIsLess}(b, S) //generic action \\
10. \hspace{1.0cm} \textit{B.eraseFront}(); \\
11. \hspace{0.5cm} \textbf{else} //a = b \\
12. \hspace{1.0cm} \textit{bothAreEqual}(a, b, S) //generic action \\
13. \hspace{1.0cm} \textit{A.eraseFront}(); \textit{B.eraseFront}(); \\
14. \textbf{while} \(\neg A.\text{empty()} \) \textbf{do} \\
15. \hspace{0.5cm} \textit{AlsLess}(A.\text{front}(), S); \textit{A.eraseFront}(); \\
16. \textbf{while} \(\neg B.\text{empty()} \) \textbf{do} \\
17. \hspace{0.5cm} \textit{bIsLess}(B.\text{front}(), S); \textit{B.eraseFront}(); \\
18. \textbf{return} S
\end{algorithm}
USING GENERIC MERGE FOR SET OPERATIONS

• Any of the set operations can be implemented using a generic merge

• For example:
 • For intersection: only copy elements that are duplicated in both list
 • For union: copy every element from both lists except for the duplicates

• All methods run in linear time
BETTER/TYPICAL SET IMPLEMENTATION

- Can use search trees such that the key is equivalent to the element to implement a set, allows fast ordering of data
THE SELECTION PROBLEM

- Given an integer k and n elements $\{x_1, x_2, \ldots, x_n\}$, taken from a total order, find the k-th smallest element in this set.
 - Also called order statistics, the ith order statistic is the ith smallest element
 - Minimum - $k = 1$ - 1st order statistic
 - Maximum - $k = n$ - nth order statistic
 - Median - $k = \left\lfloor \frac{n}{2} \right\rfloor$
 - etc
THE SELECTION PROBLEM

• Naïve solution - SORT!

• We can sort the set in $O(n \log n)$ time and then index the k-th element.

• Can we solve the selection problem faster?
THE MINIMUM (OR MAXIMUM)

Algorithm minimum(A)

Input: Array A

Output: minimum element in A

1. \(m \leftarrow A[1] \)
2. for \(i \leftarrow 2 \ldots n \) do
3. \(m \leftarrow \min(m, A[i]) \)
4. return \(m \)

- **Running Time**
 - \(O(n) \)

- Is this the best possible?
Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:

- **Prune**: pick a random element x (called pivot) and partition S into
 - L elements $< x$
 - E elements $= x$
 - G elements $> x$
- **Search**: depending on k, either answer is in E, or we need to recur on either L or G

Note: Partition same as Quicksort
QUICK-SELECT VISUALIZATION

• An execution of quick-select can be visualized by a recursion path
 • Each node represents a recursive call of quick-select, and stores k and the remaining sequence

$$k = 5, S = (7, 4, 9, 3, 2, 6, 5, 1, 8)$$

$$k = 2, S = (7, 4, 9, 6, 5, 8)$$

$$k = 2, S = (7, 4, 6, 5)$$

$$k = 1, S = (7, 6, 5)$$

5
EXERCISE

• Best Case - even splits (n/2 and n/2)
• Worst Case - bad splits (1 and n-1)

Derive and solve the recurrence relation corresponding to the best case performance of randomized quick-select.

Derive and solve the recurrence relation corresponding to the worst case performance of randomized quick-select.

Good call

Bad call
EXPECTED RUNNING TIME

- Consider a recursive call of quick-select on a sequence of size s
 - Good call: the size of L and G is at most $\frac{3s}{4}$
 - Bad call: the size of L and G is greater than $\frac{3s}{4}$

- A call is good with probability $1/2$
 - $1/2$ of the possible pivots cause good calls:
EXPECTED RUNNING TIME

- Probabilistic Fact #1: The expected number of coin tosses required in order to get one head is two
- Probabilistic Fact #2: Expectation is a linear function:
 - $E(X + Y) = E(X) + E(Y)$
 - $E(cX) = cE(X)$
- Let $T(n)$ denote the expected running time of quick-select.
- By Fact #2, $T(n) < T\left(\frac{3n}{4}\right) + bn \ast (expected \# \ of \ calls \ before \ a \ good \ call)$
- By Fact #1, $T(n) < T\left(\frac{3n}{4}\right) + 2bn$
- That is, $T(n)$ is a geometric series: $T(n) < 2bn + 2b \left(\frac{3}{4}\right) n + 2b \left(\frac{3}{4}\right)^2 n + 2b \left(\frac{3}{4}\right)^3 n + \cdots$
- So $T(n)$ is $O(n)$.
- We can solve the selection problem in $O(n)$ expected time.
DETERMINISTIC SELECTION

• We can do selection in $O(n)$ worst-case time.

• Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 • Divide S into $\frac{n}{5}$ sets of 5 each
 • Find a median in each set
 • Recursively find the median of the “baby” medians.

• See Exercise C-11.22 for details of analysis.
INTERVIEW QUESTION 1

• You are given two sorted arrays, \(A \) and \(B \), where \(A \) has a large enough buffer at the end to hold \(B \). Write a method to merge \(B \) into \(A \) in sorted order.
INTERVIEW QUESTION 2

• Write a method to sort an array of strings so that all the anagrams are next to each other.
 • Two words are anagrams if they use the exact same letters, i.e., race and care are anagrams.
INTERVIEW QUESTION 3

• Imagine you have a 2 TB file with one string per line. Explain how you would sort the file.