ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO
DIRECTED GRAPHS
DIGRAPHS

• A digraph is a graph whose edges are all directed
 • Short for “directed graph”

• Applications
 • one-way streets
 • flights
 • task scheduling
DIGRAPHS PROPERTIES

• A graph $G = (V, E)$ such that
 • Each edge goes in one direction:
 • Edge (a, b) goes from a to b, but not b to a

• If G is simple, $m < n(n - 1)$

• If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size
DIGRAPh APPLICATION

• Scheduling: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started
DIRECTED DFS

• We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.

• In the directed DFS algorithm, we have four types of edges:
 • discovery edges
 • back edges
 • forward edges
 • cross edges

• A directed DFS starting at a vertex s determines the vertices reachable from s.
REACHABILITY

• DFS tree rooted at v: vertices reachable from v via directed paths
STRONG CONNECTIVITY

• Each vertex can reach all other vertices
STRONG CONNECTIVITY ALGORITHM

• Pick a vertex \(v \) in \(G \)
• Perform a DFS from \(v \) in \(G \)
 • If there’s a \(w \) not visited, print “no”
• Let \(G' \) be \(G \) with edges reversed
• Perform a DFS from \(v \) in \(G' \)
 • If there’s a \(w \) not visited, print “no”
 • Else, print “yes”
• Running time: \(O(n + m) \)
STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the subgraph

• Can also be done in $O(n + m)$ time using DFS, but is more complicated (similar to biconnectivity).

{a, c, g}
{f, d, e, b}
TRANSITIVE CLOSURE

• Given a digraph G, the transitive closure of G is the digraph G^* such that
 • G^* has the same vertices as G
 • if G has a directed path from u to v ($u \rightarrow v$), G^* has a directed edge from u to v

• The transitive closure provides reachability information about a digraph
Computing the Transitive Closure

• We can perform DFS starting at each vertex
 • $O(n(n + m))$

If there’s a way to get from A to B and from B to C, then there’s a way to get from A to C.

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm
FLOYD-WARSHALL TRANSITIVE CLOSURE

• Idea #1: Number the vertices 1, 2, ..., n.

• Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

 Uses only vertices numbered i, \ldots, k
 (add this edge if it’s not already in)

 Uses only vertices numbered $i, \ldots, k - 1$

 Uses only vertices numbered k, \ldots, j
FLOYD-WARSHALL’S ALGORITHM

- Number vertices $v_1, ..., v_n$
- Compute digraphs $G_0, ..., G_n$
 - $G_0 \leftarrow G$
 - G_k has directed edge (v_i, v_j) if G has a directed path from v_i to v_j
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
- Running time: $O(n^3)$, assuming G's adjacency matrix is $O(1)$

Algorithm FloydWarshall(G)

Input: Digraph G

Output: Transitive Closure G^* of G

1. Name each vertex $v \in G$.vertices() with $i = 1 ... n$
2. $G_0 \leftarrow G$
3. for $k \leftarrow 1 ... n$ do
4. $G_k \leftarrow G_{k-1}$
5. for $i \leftarrow 1 ... n$ | $i \neq k$ do
6. for $j \leftarrow 1 ... n$ | $j \neq i, k$ do
7. if G_{k-1} hasAdjacent(v_i, v_k) \&
 G_{k-1} hasAdjacent(v_k, v_j) \&
 $\neg G_k$ hasAdjacent(v_i, v_j) then
8. G_k.insertDirectedEdge(v_i, v_j)
9. return G_n
FLOYD-WARSHALL EXAMPLE
FLOYD-WARSHALL, ITERATION 1
FLOYD-WARSHALL, ITERATION 2
FLOYD-WARSHALL, ITERATION 3

Diagram showing connectivity between cities with arrows indicating directed edges.
FLOYD-WARSHALL, ITERATION 4

DIAGRAM:

- Nodes: SFO, LAX, DFW, ORD, JFK, BOS, MIA
- Arrows indicate directed edges between nodes.
- v1, v2, v3, v4, v5, v6, v7 represent vertices in the graph.
FLOYD-WARSHALL, ITERATION 5
FLOYD-WARSHALL, ITERATION 6
FLOYD-WARSHALL, CONCLUSION
DAGS AND TOPOLOGICAL ORDERING

• A directed acyclic graph (DAG) is a digraph that has no directed cycles

• A topological ordering of a digraph is a numbering
 • v_1, \ldots, v_n
 • Of the vertices such that for every edge (v_i, v_j), we have $i < j$

• Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints

• Theorem - A digraph admits a topological ordering if and only if it is a DAG
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)

A typical student day

- wake up
- study computer sci.
- eat
- nap
- more c.s.
- play
- write c.s. program
- bake cookies
- work out
- sleep
- dream about graphs
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\)
in \(E\) implies \(u < v\)
ALGORITHM FOR TOPOLOGICAL SORTING

• Note: This algorithm is different than the one in the book

Algorithm TopologicalSort(G)
1. $H \leftarrow G$
2. $n \leftarrow G$.numVertices()
3. while $\neg H$.empty() do
 4. Let v be a vertex with no outgoing edges
 5. Label $v \leftarrow n$
 6. $n \leftarrow n - 1$
 7. H.eraseVertex(v)
IMPLEMENTATION WITH DFS

- Simulate the algorithm by using depth-first search
- \(O(n + m) \) time.

Algorithm topologicalDFS\((G)\)

Input: DAG \(G \)

Output: Topological ordering of \(g \)

1. \(n \leftarrow G.\text{numVertices}() \)
2. Initialize all vertices as \textit{UNEXPLORED}
3. for each vertex \(v \in G.\text{vertices}() \) do
4. if \(v.\text{getLabel}() = \textit{UNEXPLORED} \) then
5. topologicalDFS\((G, v)\)

Algorithm topologicalDFS\((G, v)\)

Input: DAG \(G \), start vertex \(v \)

Output: Labeling of the vertices of \(G \) in the connected component of \(v \)

1. \(v.\text{setLabel}(\textit{VISITED}) \)
2. for each \(e \in v.\text{outEdges}() \) do
3. \(w \leftarrow e.\text{dest}() \)
4. if \(w.\text{getLabel}() = \textit{UNEXPLORED} \) then
5. //\(e \) is a discovery edge
6. topologicalDFS\((G, w)\)
7. else
8. //\(e \) is a forward, cross, or back edge
9. Label \(v \) with topological number \(n \)
10. \(n \leftarrow n - 1 \)
TOPOLOGICAL SORTING EXAMPLE
TOPOLOGICAL SORTING EXAMPLE