Motion Planning

Given an environment, we find a valid path for an object (robot) from a start position to a goal position.

However, motion planning is computationally difficult. Therefore, we use sampling-based planners like Probabilistic Roadmap (PRM), which randomly samples an environment to build a roadmap of configurations to find a solution. However, they still have problems such as narrow passages.

User-Guided Planning

User-Guided Planning has the potential to solve narrow passages because of the combination of a planner’s automation with a human’s skill at global scene analysis.

- Planners are fast, but usually take the obvious route, which is sometimes detrimental.
- Humans have a natural sense of motion planning
- Combined, both make up for what the other lacks.

Related Work:

Region Steering is a user-guided planning technique where the user specifies a region to the planner and designates it as an avoid, attract or neutral to guide the planner through an optimal or safe path.

User-guided technique lets a user input an approximate path to seed the sampling-based planner by utilizing a 2D mouse, 6D haptic device, or 6D camera flight with keyboard and mouse.

- gives positional input to sampler, which then assigns orientation and corrects invalid configurations

Method: Path Steering

User can create paths with several input devices

- Mouse 2D
- Camera 3D
- PHANToM 3D

Experiments

Set up:

Used: Mouse 2D

Used: Camera 3D

Environments used for testing:

- Heterogeneous
- S-Tunnel
- L-Tunnel
- Bug-Trap

In these environments user input-time, planner time, amount of edges and configurations are taken into account.

- For the automated planners the only input were the environment and query. All planners had a limit of 10,000 nodes, to ensure they would finish within our timeframes.
- For Path Steering, the user drew the path and ran it until it solved, with the same node limitations as above.

From our experiments, we can see that the User-Guided Path Steering technique:

- Achieves a better result than any automated planner by itself.
- Allows the human component (user) to limit the sampling space to the input path.

Preliminary Results

- *NOTE: Only experienced undergraduates participated in Path Steering. Also, our method supports PHANToM® haptic path capture, but we were unable to test it due to time constraints.*

Conclusion

We have presented a motion planner that combines human intuition and planner automation to better solve various motion planning problems, including narrow passages.

We have shown that a human’s natural motion planning abilities lead to a drastic improvement in time, reducing planning time to a few seconds, and the average combined time to less than a minute.

Future Work:

We would like to improve our approach of the motion planning problem by

- Allowing the user to input multiple paths
- Comparing path steering with region steering to compare user burden and effectiveness
- Improving our method’s robustness to account for inexperienced users

We thank Dr. Nancy M. Amato for her support and funding toward this research; we also thank our mentors, Read Sandstrom and Jory Denny, for their support and guidance throughout this research period. We would like to thank the Motion Planning group, for their critiques and help in the development of this poster, as well as our research.

Acknowledgements

We thank Dr. Nancy M. Amato for her support and funding towards this research; we also thank our mentors, Read Sandstrom and Jory Denny, for their support and guidance throughout this research period. We would like to thank the Motion Planning group, for their critiques and help in the development of this poster, as well as our research.