CHAPTER 13
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO AND JORY DENNY
DIRECTED GRAPHS
A digraph is a graph whose edges are all directed
- Short for “directed graph”

Applications
- one-way streets
- flights
- task scheduling
A graph \(G = (V, E) \) such that
- Each edge goes in one direction:
- Edge \((a, b)\) goes from \(a\) to \(b\), but not \(b\) to \(a\)
- If \(G \) is simple, \(m < n(n - 1) \)
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size
Scheduling: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started.
DIRECTED DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.
- In the directed DFS algorithm, we have four types of edges:
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s.
REACHABILITY

- DFS tree rooted at v: vertices reachable from v via directed paths
STRONG CONNECTIVITY

- Each vertex can reach all other vertices
STRONG CONNECTIVITY ALGORITHM

- Pick a vertex \(v \) in \(G \)
- Perform a DFS from \(v \) in \(G \)
 - If there’s a \(w \) not visited, print “no”
- Let \(G' \) be \(G \) with edges reversed
- Perform a DFS from \(v \) in \(G' \)
 - If there’s a \(w \) not visited, print “no”
 - Else, print “yes”
- Running time: \(O(n + m) \)
STRONGLY CONNECTED COMPONENTS

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in $O(n + m)$ time using DFS, but is more complicated (similar to biconnectivity).
Given a digraph G, the transitive closure of G is the digraph G^* such that:

- G^* has the same vertices as G
- if G has a directed path from u to v ($u \rightarrow v$), G^* has a directed edge from u to v

The transitive closure provides reachability information about a digraph.
We can perform DFS starting at each vertex
- $O(n(n + m))$

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm
FLOYD-WARSHALL TRANSITIVE CLOSURE

- Idea #1: Number the vertices 1, 2, ..., n.
- Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

Uses only vertices numbered \(i, \ldots, k\)
(\text{add this edge if it’s not already in})

Uses only vertices numbered \(i, \ldots, k-1\)

Uses only vertices numbered \(k, \ldots, j\)
Number vertices v_1, \ldots, v_n

Compute digraphs G_0, \ldots, G_n

- $G_0 \leftarrow G$
- G_k has directed edge (v_i, v_j) if G has a directed path from v_i to v_j

We have that $G_n = G^*$

In phase k, digraph G_k is computed from G_{k-1}

Running time: $O(n^3)$, assuming G.areAdjacent(v_i, v_j) is $O(1)$ (e.g., adjacency matrix)

Algorithm FloydWarshall(G)

Input: Digraph G

Output: Transitive Closure G^* of G

1. Name each vertex $v \in G$.vertices() with $i = 1 \ldots n$
2. $G_0 \leftarrow G$
3. for $k \leftarrow 1 \ldots n$ do
4. $G_k \leftarrow G_{k-1}$
5. for $i \leftarrow 1 \ldots n \mid i \neq k$ do
6. for $j \leftarrow 1 \ldots n \mid j \neq i, k$ do
7. if G_{k-1}.areAdjacent$(v_i, v_k) \land G_{k-1}$.areAdjacent$(v_k, v_j) \land \neg G_k$.areAdjacent$(v_i, v_j)$ then
8. G_k.insertDirectedEdge(v_i, v_j)
9. return G_n
FLOYD-WARSHALL, ITERATION 1
FLOYD-WARSHALL, ITERATION 3
FLOYD-WARSHALL, ITERATION 4
FLOYD-WARSHALL, ITERATION 5
FLOYD-WARSHALL, ITERATION 6
FLOYD-WARSHALL, CONCLUSION
A directed acyclic graph (DAG) is a digraph that has no directed cycles.

A topological ordering of a digraph is a numbering v_1, \ldots, v_n of the vertices such that for every edge (v_i, v_j), we have $i < j$.

Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints.

Theorem - A digraph admits a topological ordering if and only if it is a DAG.
Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)
Number vertices, so that (u, v) in E implies $u < v$
ALGORITHM FOR TOPOLOGICAL SORTING

- Note: This algorithm is different than the one in the book

```
Algorithm TopologicalSort(G)
1. \( H \leftarrow G \)
2. \( n \leftarrow G.\text{numVertices()} \)
3. while \( \neg H.\text{empty()} \) do
4. Let \( v \) be a vertex with no outgoing edges
5. Label \( v \leftarrow n \)
6. \( n \leftarrow n - 1 \)
7. \( H.\text{eraseVertex}(v) \)
```
IMPLEMENTATION WITH DFS

- Simulate the algorithm by using depth-first search
- $O(n + m)$ time.

Algorithm topologicalDFS(G)
Input: DAG G
Output: Topological ordering of G

1. $n \leftarrow G$.numVertices()
2. Initialize all vertices as $UNEXPLORERED$
3. for each vertex $v \in G$.vertices() do
4. if v.getLabel() = $UNEXPLORERED$ then
5. topologicalDFS(G, v)
6. else
7. // e is a forward, cross, or back edge
8. Label v with topological number n
9. $n \leftarrow n - 1$

Algorithm topologicalDFS(G, v)
Input: DAG G, start vertex v
Output: Labeling of the vertices of G

in the connected component of v

1. v.setLabel(VISITED)
2. for each $e \in v$.outEdges() do
3. $w \leftarrow e$.dest()
4. if w.getLabel() = $UNEXPLORERED$ then
5. // e is a discovery edge
6. topologicalDFS(G, w)
7. else
8. // e is a forward, cross, or back edge
9. Label v with topological number n
10. $n \leftarrow n - 1$
TOPOLOGICAL SORTING EXAMPLE

Diagram of a directed graph with nodes labeled 1 to 9, showing the topological order.