CSCE 221 Data Structures and Algorithms
Syllabus

Spring 2016
1 Course Information

Instructor Information

Primary Instructor: Mukulika Ghosh
Email: mghosh@cse.tamu.edu
url: http://parasol.tamu.edu/~mghosh
Office: HRBB 516
Office Hours: TTH 3:00PM - 5:00PM; Or By Appointments

Co-Instructor: Nancy M. Amato
Email: amato@cse.tamu.edu
url: http://parasol.tamu.edu/~amato
Office: HRBB 425H
Office Hours: TBA

Teaching Assistant: Chih-Peng Wu
Email: chinuy@tamu.edu
url: http://parasol.tamu.edu/~chinuy
Office: HRBB 407C
Office Hours: M 11:00AM - 12:00PM; F 10:00 AM - 11:00 AM, 2:00 PM - 3:00 PM; Or By Appointment

Teaching Assistant: Read Sandstrom
Email: readamus@cse.tamu.edu
url: http://parasol.tamu.edu/~readamus
Office: HRBB 407C
Office Hours: TTHF 11:00AM - 12:00PM; Or By Appointment

Section Information

CSCE 221-513
Lecture: MWF 3:00pm-3:50pm CHEN 102
Lab: MW 1:50pm-2:40pm RDMC 111H

CSCE 221-514
Lecture: MWF 3:00pm-3:50pm CHEN 102
Lab: MW 5:45pm-6:35pm RDMC 111H

CSCE 221-515
Lecture: MWF 3:00pm-3:50pm CHEN 102
Lab: TTh 11:10am-12:00pm RDMC 111H

Requirements

Prerequisite: CSCE 121
Corequisite: CSCE 222: Discrete Structures for Computing

Textbook

2 Course Outcomes

After taking this course a student will be able to:

- Define, implement, and analyze the complexities of the following abstract data types:
 - Linear data structures: Lists, Vectors, Stacks, Queues
 - Trees
 - Maps, Dictionaries, Hashing
 - Graphs
- Define, implement, and analyze the complexity of common algorithms involving searching, sorting, and selection.
- Understand the uses and trade-offs of various algorithms and data structures.

3 Course Content and Tentative Schedule

During the semester we will discuss the following topics:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>Ch 1–4</td>
</tr>
<tr>
<td>1, 2</td>
<td>Linear Data Structures: Stacks, queues, lists</td>
<td>Ch 5–6</td>
</tr>
<tr>
<td>3, 4</td>
<td>Trees, Priority Queues, and Heaps</td>
<td>Ch 7–8</td>
</tr>
<tr>
<td>5, 6</td>
<td>Maps, Dictionaries, Hashing</td>
<td>Ch 9</td>
</tr>
<tr>
<td>7, 8</td>
<td>Search Trees</td>
<td>Ch 10</td>
</tr>
<tr>
<td>9, 10, 11</td>
<td>Sorting and Selection</td>
<td>Ch 11</td>
</tr>
<tr>
<td>12, 13, 14</td>
<td>Graphs and Graph Algorithms</td>
<td>Ch 13</td>
</tr>
</tbody>
</table>

4 Assignments and Grading

All assignments will be announced in class and posted on the course web page. If you miss class for any reason, it is your responsibility to find out what assignments you missed.

All assignments submitted in hard copy must include a signed coverpage. Assignments without the coverpage will not receive credit.

All assignments must be submitted at the beginning of the lecture on due date or stated otherwise.

Your grade will be based on four components:

1. **Exams** — 45% — There will be two mid-term exams and one final exam, each worth 15%. Each exam will have two components: an in-class exam (10%) covering concepts and algorithms and an in-lab practical exam (5%).

2. **Quizzes and Lab Activities** — 10% — There will be approximately ten in-class and ten in-lab activity during the semester. Each will be worth a half of a point.

3. **Participation** — 5% — This grade includes your in-class participation and attendance grade.
4. **Culture Assignments — 5%** — There is much more to computer science than your normal coursework. These assignments give you the opportunity to learn about some extra research, people, and concepts outside of class. There will be two culture assignments each worth 2.5% of the final grade.

5. **Programming Assignments — 20%** — These assignments are geared towards understanding the implementation aspects of various important data structures and algorithms. There will be four programming assignments through the semester each worth 5%.

6. **Homework Assignments — 15%** — Being able to design and analyze algorithms is an important aspect of computer science. There will be 10 pencil and paper assignments worth 1.5% each.

All assignment descriptions can be found on the course webpage.

Final grades will be assigned according to the following scale:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>100–90%</th>
<th>89–80%</th>
<th>79–70%</th>
<th>69–60%</th>
<th>60 and below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Grade</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
</tbody>
</table>

However, the percentage range in the scale is subject to change based on the overall performance of the entire class.

5 Policies

Attendance and Late Assignments

Attendance at all lab sessions is required. Attendance at lectures comprises 5% of total grade. You are allowed to miss two lectures or labs without penalty throughout the semester. There will be no make-up exams and no late assignments accepted except for university-excused absences. Please discuss unusual circumstances in advance with the instructor when possible.

Collaboration

For the assignments in this class, discussion of concepts with others is encouraged, but all assignments must be done on your own, unless otherwise instructed. Reference every source you use, whether it be a person, a book, a paper, a solution set, a web page or whatever. You MUST write up your assignments in your own words. Copying is strictly forbidden. Every assignment must be turned in with a cover sheet available from the course web page, which lists all sources you used.

Academic Integrity

The Aggie Honor Code is “An Aggie does not lie, cheat, or steal or tolerate those who do.” Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System. For additional information please visit here.

Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact
Disability Services, currently located in the Disability Services building at the Student Services at White Creek complex on west campus or call 979-845-1637. For additional information, visit [here](#).