Architecture Interaction with Databases (II)

Instructor: Josep Torrellas
CS533
Memory System Characterization of Commercial Workloads
Barroso et al, ISCA-98
Workloads

• OLTP
 – banking system: transactions update balance in randomly-selected account
 – small computation
 – 4 tables updated per transaction --> I/O

• DSS
 – read-only queries
 – more complicated
 – queries can be parallelized

• Web index search
 – similar to DSS
 – read only
Experiments

• Hardware platform:
 – Server with 4 300-MHz processors
 – latency to mem: 260ns
 – hardware event counters

• Simulator platform:
 – SimOS: simulates app+os
Monitoring Results

• Breakdown of execution time (Figs 3 and 4):
 – CPI of OLTP is very high --> poor performance
 – OLTP:
 • L3 misses (see table 2): workload overwhelms caches
 • Also important: L1 and L2 misses (that hit in L3)
 • dirty misses (data fetched from another cache): 15%, which are slower:
 – 417ns to get data from another cache vs 267ns to get data from memory
 – dirty misses increase with the number of processors and L3 size
 – DSS:
 • More efficient: lower CPI
 • L1 misses, since L1 not fully successful at keeping the working set
 • L2 can hold the state
 • no dirty misses
 – Altavista: best performance
Simulation Results

- L1-D and L1-I 32 KB caches
- unified 2 MB L2
Simulation Results

- Sharing Patterns of OLTP (fig 5)
 - User time dominates
 - benefits from larger/more assoc caches
 - Cache and memory stall still important
 - L2 cache behavior for different cache sizes/assoc (Fig 5)
 - Most communication misses due to true (not F) sharing
 - Analyzing the number processors (Fig 6). IF P goes up:
 - increases the hit time
 - ratio of true to false sharing does not change.
 - Overall: communication misses
Cache Sizes

- Larger on-chip caches good for DSS and OLTP (Fig 6)
- Larger on-chip caches cache most misses in DSS
- OLTP has large footprint: continue to benefit with 4-8MB L2
Sensitivity to Cache Line Size

- Changing line size of the L3 (Fig 8)
 - data communicated among processors (true sharing) has good spatial locality
 - Cold misses also spatial locality
 - No impact on replacement misses
Summary

• OS and I/O do not dominate tuned DB
• OLTP:
 – I and D locality only captured with large L3 caches
 – high communication miss rate (dirty misses)
• DSS and AltaVista:
 – Sensitive to the size and latency of L1
 – Less sensitive to off chip caches sizes/latencies
• Workloads require different server designs