Ex. 28.2-6. Let \(P_1 = (a+b)(c-d) = ac-ad+bc-bd \)

\[
P_2 = ac
d_2 = bc
\]

\[
\therefore ac-bd = P_1 + P_2 - P_3
d + bc = P_2 + P_3
\]

only 3 multiplications.

Ex. 16.3-2

Assume there are totally \(n \) letters.

(b) The letter whose frequency is \(F_i \) (the \(i \)th Fibonacci No.),

if \(i = 1 \), then the code will contain \(n-1 \) "1"s

if \(i > 1 \), the code will contain, the first \(n-i \) "1"s and the last one is a "0"s.
Ex. 16.3-6

HUFFMAN(C)

- **TENARY TREE**

 \[n \leq 1 \mid \]

 \[Q \subseteq C \]

 for \(i = 1 \) to \(n - 1 \)

 do allocate a new node \(z \)

 \[\text{left}[z] \leftarrow x \leftarrow \text{Extract - MIN}(Q) \]

 \[\text{middle}[z] \leftarrow y \leftarrow \text{Extract - M2N}(Q) \]

 \[\text{right}[z] \leftarrow t \leftarrow \text{Extract - MIN}(Q) \]

 \[f(z) = f(x) + f(y) + f(t) \]

 return \(\text{Extract - MIN}(Q) \)

Proof:

\[
\begin{align*}
\begin{array}{c}
\text{Proof } \text{of } B(T) - B(T') \\
\text{where } B(T) = \sum x f(x) \text{ and } B(T') = \sum x f'(x)
\end{array}
\end{align*}
\]

This is to prove \(B(T) - B(T') \geq 0 \). Then we can prove \(B(T'') - B(T') \geq 0 \).

\[
B(T) = \sum x f(x)
\]

\[
B(T'') - B(T') \geq 0
\]

\[
B(T) = \sum x f(x)
\]
Ex 23.2-8

A counter-example:

\[V_1 = \{ B, C, E, F \}, \quad V_2 = \{ A, D \}. \]

The Algorithm can never calculate a MST.

Since \(E_1 = \emptyset \)

Problem 23-4(b)

(6) Obviously, \(T \) is not a MST, a counter-example:

\[\begin{array}{c}
A \\
\downarrow \\
B & 2 & 6 \\
\uparrow & & \\
C \\
\end{array} \]

The Algorithm may choose \(A, C \), thus total weight is \(2 + 3 = 5 \), which is not minimal.

(b) Implementation: (similar to Kruskal's algorithm)

1. \(\text{MST} = \text{B} - \text{Maybe} (G, w) \)
2. \(T = \emptyset \)
3. for each vertex \(v \in V(G) \)
 4. do \(\text{MAKE-SET}(v) \)
5. for each edge \((u, v) \in E \)
 6. do if \(\text{FIND-SET}(u) \neq \text{FIND-SET}(v) \)
5. then \(T \leftarrow T \cup \{u, v\} \)
6. UNION \((u, v) \)
7. return \(T \).