Ex. 3.4.1-4] The running time of the algorithm is $O(n \cdot W)$, where n is the number of items and W is the maximum weight the thief can steal. Assuming numeric parameters to the problem are written in binary, it takes $\log W$ bits to represent W. So the size of the part of the input representing W is $K = \log W$. But the running time depends on $W = 2^K$, which is not polynomial in K (size of the input) in general.

Ex. 3.4.2-1] Show that GRAPH-ISOMORPHISM is in NP by describing a poly time algorithm to verify a candidate solution. A candidate solution is a mapping f from V_1 (nodes of G_1) to V_2 (nodes of G_2). To verify, check that the mapping is one-to-one and onto (takes time $O(V_1)$). Then check, for each pair of nodes u and v in V_1, that (u, v) is an edge of G_1 if and only if $(f(u), f(v))$ is an edge of G_2 (takes time $O(V_1^2)$).

Ex. 3.4.5-1] Show that the subgraph isomorphism problem (SI) is NP-complete. SI ∈ NP: A candidate solution, given input G_1 and G_2, is a subset S of the nodes of G_2 and a mapping f from the nodes of G_1 to S. Verify as in previous exercise.
known NPC
\[\text{problem} \]
unknown NPC
\[\text{problem} \]

Clique vs. IS

Given any CLIQUE input G and K, construct in polynomial time this IS input: $G_\overline{C}$ and G, where G is the original CLIQUE input and $G_\overline{C}$ is the clique graph with K nodes. Check that G has a clique of size K if and only if $G_\overline{C}$ is isomorphic to a subgraph of G (i.e., if and only if G contains a clique of size K). The point is the CLIQUE is a special case of IS.

Prof. 34-1

a) Independent set (IS) decision problem:

Given a graph G and an integer K, does G have an independent set of size at least K?

Show IS is NP-complete.

i) **IS \in NP**:

Given a candidate solution, which is a subset S of the nodes of the input graph G, check in polynomial time if $|S| \geq K$ and if there is no edge between any pair of nodes in S.

ii) **Clique vs. IS**:

Given an arbitrary CLIQUE input (G, K), construct in polynomial time an IS input (\overline{G}, K), where \overline{G} is the complement graph of G. Since a set of nodes C is a clique in G if and only if C is an independent set in \overline{G}, G has a clique of size K if and only if \overline{G} has an independent set of size K.
c) Efficient alg. to solve IS when each vertex in \(G \) has degree 2.

Then \(G \) must consist of one or more (simple) cycles. For each cycle \(K \), number the nodes in order around the cycle \(v_1^k, v_2^k, v_3^k \ldots \).

Choose the even-indexed nodes to be in the independent set.