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Abstract

The brain has extraordinary computational power to represent and interpret complex nat-
ural environments is essentially determined by the topology and geometry of the brain’s
architectures. We present a framework to construct cortical networks which borrows from
probabilistic roadmap methods developed for robotic motion planning. We abstract the net-
work as a large-scale directed graph, and use L-systems and statistical data to ‘grow’ neu-
rons that are morphologically indistinguishable from real neurons. We detect connections
(synapses) between neurons using geometric proximity tests.

Key words. Cortical Networks. PRM. BTS. L-System. Rectangle Tree.

1 Introduction

The brain has extraordinary computational power which is determined in large part by the topol-
ogy and geometry of its structures. A unique instrument developed at Texas A&M University,
the Brain Tissue Scanner (BTS) [5], will enable an entire mouse brain to be imaged and recon-
structed at the neuronal level of detail. Moreover, by enabling studies of the topology of cortical
networks, it could provide insight into one of the least understood biological processes — neu-
ral computation. Using destructive sectioning and cross-sectional imaging, the BTS can scan an
entire transgenic GFP/XFP-stained mouse brain in approximately one month. The data produced
will be used to reconstruct the three-dimensional neuronal structure of the scanned tissue. While
scientists have mapped small areas of cortex, we are not aware of any work mapping the entire
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cortical network of any mammalian species at the neuronal level of detail. Since only a small per-
centage (less than 10%) of neurons will be stained, the neurons reconstructed from BTS data will
be augmented with synthetic neurons that are grown based on the measured biological neurons.
Next, their interconnections (synapses) will be generated. The geometry and connectivity of the
resulting cortical network will be studied theoretically and, in collaboration with the IBM Blue
Gene project, through simulation on massively parallel machines.

In this paper, we start with geometric models of reconstructed neurons, and concentrate on the
generation and connection of the anatomically realistic synthetic neurons needed to complete the
cortical network. Our general strategy borrows from the probabilistic roadmap methods (PRMS) [4]
first developed for robotic motion planning, but which have been applied to applications ranging
from robotics to computational biology [7]. PRMS construct a network (roadmap) in which nodes
represent feasible configurations (neurons) and edges represent valid connections (synapses). In
this paper, we use L-systems [6,1] to grow synthetic neurons and describe techniques for identify-
ing geometrically and anatomically realistic synapses. A simple prototype system, called NEURON
PRM (N-PRm), for growing a synthetic cortical network has been implemented.

2 Neuron PRM Framework

Our ultimate goal is to map and understand the connectivity and geometry of the cortical network.
The construction process borrows from the PRM framework by using simple, local techniques to
construct a representative model of a much larger unknown space. We begin our modeling by par-
titioning the cerebral cortex into a set of finite elements (FES). The general system architecture is
described in Figure 1(b). During neuron generation, neurons are ”grown” in the cortex using infor-
mation describing the spatial distribution of neurons and their geometry contained in the cortex FE
model. The neurons generated are stored in the FE’s neuron database. During synapse generation,
neurons are connected using the geometric models constructed during the neuron generation, and
their known affinities for synapse creation. Finally, a roadmap representing cortical connectivity is
ready for analysis and simulation.

We now briefly describe the basic building blocks of our method: neurons, FE model, statisti-
cal databases, and the roadmap graph. A neuron is represented as a tree of neural components.
Since neurons may be composed of tens of thousands of segments and may have thousands of
synapses, the storage required to record the pre-synaptic and post-synaptic endings in the corti-
cal network can be massive. The finite element model of the cortex partitions the cerebral cortex
into finite elements (FEs) which contain local information about types, population distribution,
and spatial distributions of neurons in that FE (upper right corner in Figure 1(b).) FE models also
help in visualization and speed up the process of finding connections between neurons. Several
databases contain information for growing and distributing neurons (see center part of Figure Fig-
ure 1(b).)There are three types of databases: (i) types of neurons and probability for each type,
(ii) spatial distribution of each type of neuron, and (iii) statistical data for the neuron model. The
information in the first two databases is unique to each each FE, and so is stored with the FEs. The
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Fig. 1. (a) Synthetic neurons generated and connected in the cortex. (b) Neuron PRM Framework: Finite
elements, Neuron generation/connection, roadmap graph, and database. (c) A 1-fold rectangle tree.

third database is associated with each neuron type. A roadmap graph (lower-right in Figure 1(b).)
is a directed graph representing an abstract cortical network. Each vertex in the graph corresponds
to a neuron and each directed edge represents one or more connections (or synapses) between two
neurons. Thus, the roadmap provides a hierarchical representation facilitating analysis, simulation
and visualization of the cortical network.

Generation of Neurons. Many different models of neurons have been proposed. Here we are in-
terested in the morphological features of neurons and in their connectivity which will be needed to
simulate their function. In [6] the use of L-systems which had been used to model plants was pro-
posed to represent neuron morphology. L-Neuron [1], developed by Ascoli and Krichmar, uses an
L-system to generate neurons. It stochastically samples parameters from experimental distributions
stored in a neuroanatomical database to be used in the generation of a virtual neuron.

Neuron PRM uses a similar approach to grow neurons. An abstract neuron contains information
regarding position, type, associated FE, and a unique ID. Position and type are generated randomly
based on some given statistical distribution stored in the FE’s database. Next, an L-system is used
to create a morpholigically correct synthetic neuron based on the information contained in the
abstract neuron and on statistics provided by the database in the host FE for that neuron type.
Currently, the statistics are calculated from a sample of SWC neurons publically available [2]. In
the future, we will use reconstructed neurons provided by the BTS to extract statistics. An abstract
neuron and synthetic neuron pair are stored as a vertex of the cortical network (see Figure 2(a,b,c).)

Generation of Synapses. After the FE model has been populated with neurons as described above,
the cortical network is assembled by identifying potential synapses and connecting the neurons.
Statistically each neuron has thousands of synapses and there are on the order of sixteen million
neurons in the cortex of the mouse. Thus, a brute force strategy which tests all pairs of neurons
is not feasible. To address this issue, we define simple metrics to reject neuron pairs and identify
potential synapses very quickly. Most neuron pairs are quickly rejected by a filtering test which
checks for intersection of their bounding volumes. Thus, detailed distance computations between
the neuronal segments will only be performed for those neuron pairs that pass the bounding volume
test. When the intersection of a pair of neurons is discovered, we connect their associated vertices
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Fig. 2. (a) Empty cortical model of mouse. (b) Cortical model filled with abstract neuron nodes and connec-
tions. (c) A closer view of cortical network. (d) Neurons in one FE surrounded by bounding volumes.

Bounding Volume Tests (Node Connection)
Bounding Box

Method Bounding Sphere Brute Force RT Naive RT Improved Convex Hull
Time for creating bounding volume 47.37 sec 47.53 sec. 47.88 sec. 47.93 sec. 56.89 sec.
Time for connection 344.46 sec 360.1 sec. 93.17 sec. 64.1 sec. 604.23 sec.
Number of edges found 59,158 19,994 19,994 19,994 6,094
Average node degree 118 39 3.9 39 12
Connected Components (CC) 16 709 709 709 5,089
Isolated neurons 14 540 540 540 3,440

Table 1
Bounding volume tests for identifying (potential) connections for 10,000 neurons.

in the roadmap (Figure 2(d)). Three different bounding volumes were tested: spheres, boxes, and
convex hulls. The bounding sphere and bounding box provide fast construction and intersection
tests, but convex hull is more accurate in terms of approximating the shape of the target neuron.
The strategy sketched above performs O(n?) bounding volume intersection tests. For the bounding
box representation, we reduced this to O(n log n+k), where £ is the actual number of intersections,
using a method based on Edelsbrunner’s rectangle tree [3] (see Fig. 1(c)). We implemented two
versions of the rectangle tree query, one described by Edelsbrunner [3] that initiates each query
from the root of the tree, and a variation we designed to solve the all-intersection query in a more
efficient way.

After a neuron pair’s bounding volumes are found to intersect, a more detailed computation will
more precisely compute synapse locations. We implemented a simple algorithm based on tenden-
cies known for (real) synapse generation. In particular, we use the fact that synapses are usually
found between segments and spines. That is, for each pair of connected neurons, we compute dis-
tances from spines of one neuron to the segments of the other neuron. If the distance is less than a
user specified value for synapse gap, this spine, segment pair is marked as synaptic site.

3 Experiments

To test our framework we generated a model of the mouse cortex (Figure 2). A summary of the
results is shown in Table 1. The running time for building these volumes, as expected, was much



Cortical Network Refinement (Synapse Discovery)
Input roadmap from Bounding Sphere Bounding Box Convex Hull
Time for finding synapse 36,896.6 sec. 9,838.6 sec. 3,481.2 sec.
Number of synapse found 417,277 416,895 400,065

Avg # of synapses between two neurons 03 55 16.0
Error Rate 97.4% 88.0% 61.5%

Table 2
Synapse discovery for 40,000 neurons.

faster for the bounding sphere and the bounding box than for the convex hull. Since the bound-
ing sphere has larger volume than the bounding box and the convex hull, there were many more
potential connections identified using the spheres than were found using the other two methods.
Also, due to the overly conservative bounding sphere, almost all the neurons were contained in
one connected component while almost a third of the neurons are isolated using the convex hull
method. For the bounding box tests, we found that the versions using the rectangle tree take 16%-
25% of the time required for the brute force method, depending on whether the standard query or
the optimized query for computing all intersections was used.

For the connection phase, we tested 10,000 neurons with the bounding sphere, bounding box, and
the convex hull. The bounding box was tested using the brute force approach, the original version of
the rectangle tree, and our optimization to compute all intersections. To identify real synapses, we
used 0.015 as the synaptic gap size (neuron height is between 0.3 and 0.9). Some results for 40,000
neurons are shown in Table 2. The roadmaps from the bounding sphere, the bounding box, and the
convex hull were tested separately. The running time for discovery is linear in the number of edges
of the input roadmap, so the convex hull is the fastest. Thus, since synapse identification requires
both abstract connection and synapse discovery, the convex hull method is the most efficient —
the first phase is more expensive, but it pays off by filtering out more neuron pairs for the second
phase, in which each test is significantly more expensive. The error rate in Table 2 is defined as :
]jvt—mf;%ﬂ where Nempty—abs—syn 1S the number of abstract synapses which did not contain any
real synapse, and Nioai—abs—syn 1S total number of abstract synapses in the given roadmap. This
measure gives us an indication of the accuracy of the bounding volume methods. Although all
methods have error rates higher than 50%, we believe this will decrease when we are able to more
densely pack the cortex with neurons. Here, we generated only 40,000 and in reality there are some
16,000,000 neurons in the mouse cortex.

4 Conclusion

We have developed a prototype system that will eventually be used to (re)construct an entire mouse
cortical network containing over 15 million neurons. Our PRM-based framework, N-PRM, for con-
structing a hierarchical model of the cortical network uses L-System neuron generators. In this pa-
per, we study various bounding volumes for reducing the cost of synapse identification. We found
that data structures, such as the rectangle tree, which use spatial information to restrict the number
of intersection tests, can lead to significant improvements in execution time. In future work, we
will further investigate our proposed optimization of the rectangle tree, including its applicability



to additional bounding volumes.
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