Parallelizing While Loops for Multiprocessor Systems†

Lawrence Rauchwerger and David Padua
University of Illinois at Urbana-Champaign

Abstract

Current parallelizing compilers treat while loops and do loops with conditional exits as sequential constructs because their iteration space is unknown. Because these types of loops arise frequently in practice, we have developed techniques that can automatically transform them for parallel execution. We succeed in parallelizing loops involving linked list traversals — something that has not been done before. This is an important problem since linked list traversals arise frequently in loops with irregular access patterns, such as sparse matrix computations. The methods can even be applied to loops whose data dependence relations cannot be analyzed at compile-time. Experimental results on loops from the PERFECT Benchmarks and sparse matrix packages show that these techniques can yield significant speedups.

1 Introduction

Most current parallelizing compilers treat while loops and do loops with conditional exits as sequential constructs. Since these types of loops arise frequently in practice, techniques for extracting their available parallelism are highly desirable. In the most general form, we define a while loop as a loop that includes one or more recurrences that can be detected at compile time, a remainder, whose dependence structure can be either analyzed statically (as being parallel or sequential) or is unknown at compile time, and one or more termination conditions. Sometimes the termination conditions form part of one of the recurrences, but they can also occur in the remainder, e.g., conditional exits from do loops. Assuming, for simplicity, that there are no cross-iteration data dependences in the remainder, there are two potential problems in the parallelization of while constructs:

- Evaluating the recurrences. If the recurrences cannot be evaluated in parallel, then the iterations of the loop must be started sequentially, leading in the best case to a pipelined execution (also known as a doacross).
- Evaluating the termination conditions. If the termination conditions (loop exits) cannot be evaluated independently by all iterations, the parallelized while loop could continue to execute beyond the point where the original sequential loop would stop, i.e., it can overshoot.

Although the concurrent evaluation of recurrences is in general not possible, some special cases lend themselves to either full or partial parallelization. There are parallel algorithms to solve simple inductions (the case of do loops) [22] and associative recurrences [4, 13, 11] but the evaluation of general recurrences has always been of a sequential nature. The concurrent evaluation of the while loop termination condition has been dealt with only in the case when it is loop invariant with respect to the remainder (a property we define later as remainder invariant). In other words, the exit conditions that have been dealt with so far are those dependent on the terms of the recurrence, and since these recurrences are executed sequentially, the exit conditions do not pose a problem for parallelization.

The task of parallelizing a while loop becomes even more difficult if the data dependence structure in the remainder cannot be determined statically. For example, there may exist additional recurrences in the the remainder that cannot be detected by the compiler. For input data dependent irregular access patterns this problem is intractable with traditional compile-time methods and has not been addressed so far.

In this paper we present a general framework for the automatic transformation of any while loop for parallel execution, provided that its remainder is indeed parallel. The basic strategy of our methods is to evaluate in parallel the recurrences that can be statically identified and speculatively execute the remainder concurrently, and then later, to “undo” the effects of any iterations that overshot the termination condition, i.e., iterations that would not have been performed by the original sequential version of the loop. We describe techniques for parallelizing loops involving linked list traversals. This is an important problem since linked list traversals arise frequently in loops with irregular access patterns, such as sparse matrix computations. In many cases, our parallelization of loops involving linked lists can be done without overhead or side effects.

Our framework for while loop parallelization can be viewed as a step toward providing while loop counterparts for the existing constructs for parallel execution of do loops, e.g., doall, doacross, doany. These new parallel constructs could be called while-doall, while-doacross, and while-doany and could prove useful in the parallel programming (manual parallelization) of applications. The methods described here extend previous works [8, 22] in that they:

1. can handle remainder variant termination conditions,
2. can test at run-time for cross-iteration data dependences in the remainder,
3. do not require work and storage for saving the values computed in the recurrence,

2 The authors are with the Center for Supercomputing Research & Development, 1308 W. Main St., Urbana, IL 61801, email: rwerger, padua@csrd.uiuc.edu. Research supported in part by Intel and NASA Graduate Fellowships and Army contract #DABT63-92-C-0033. This work is not necessarily representative of the positions or policies of the Army or the Government.
initialize dispatcher

while [not termination condition]
do work associated with current dispatcher
dispenser = next dispenser (increment)
endwhile

(a)

pointer tmp = head(list)

while [tmp . ne. null]
WORK(tmp)
tmp = next(tmp)
endwhile

(b)

do i = 1, n
if [(f(i), lt, V) exit
WORK(i)
enddo

(d)

equivalent while loop

while [i = 1]
WORK(i)
i = i + 1
endwhile

(e)

Figure 1:

4. support both static and dynamic scheduling, and
5. present a comprehensive analysis and solution package for parallelizing while loops for multiprocessors.

The techniques are capable of extracting a substantial fraction of available parallelism in a loop. In particular, it can be shown that in the worst case our techniques will extract at least 20-25% of the parallelism inherent in the loop, [18] which can amount to significant speedups on massively parallel processors. We have obtained experimental results on loops from the PERFECT Benchmarks and sparse matrix packages on the Alliant FX/80 which substantiate this conclusion.

2 Parallelizing while Loops

While loops have often been treated by parallelizing compilers as intrinsically sequential constructs because their iteration space is unknown [8]. A related case which is generally also handled sequentially by compilers is the do loop with a conditional exit. In this paper we propose techniques that can be used to execute such loops in parallel. In order to clarify our presentation we first consider loops which (a) contain a single statically detectable recurrence, and (b) have no cross–iteration data dependences except those in this recurrence. Later, we relax these constraints and show how to deal with loops with multiple recurrences and unknown cross–iteration data dependences.

In this case, a while loop can be considered as a parallel loop controlled by a recurrence. In general while loops can exhibit several dependent or independent (of one another) recurrences. We call the dominating recurrence, which precedes the rest of the computation in the dependence graph, the dispatching recurrence, or simply the dispenser (see Figure 1(a)). In the most general case, the terms of the dispatcher must be evaluated sequentially. An example of this case is a pointer used to traverse a linked list; since the values of the dispatcher (the pointer) must be evaluated in sequential order, iteration i of the loop cannot be initiated until the dispatcher for iteration i-1 has been evaluated (see Figure 1(b)). However, sometimes the evaluation of the terms of the dispatching recurrence can be parallelized. In particular, if the dispatcher is an associative recurrence, then the computation of its terms can be parallelized using techniques such as parallel prefix computations (see Figure 1(c)). Finally, in the best case, the dispatcher has the simpler form of an induction, and each point in the dispatcher’s domain can be independently and concurrently evaluated using the closed form solution of the induction. In this case, all iterations of the while loop can be executed simultaneously since aside from the dispatching recurrence we assumed no other dependences. An example of a dispatcher with a closed form solution is a do loop (see Figure 1(d–e)).

Another difficulty with parallelizing a while loop is that the termination condition (terminator) of the loop may be overshot, i.e., iterations could be executed that would not be executed by the sequential version of the loop. In the context of our analysis we define the terminator as remainder invariant or RI if it is only dependent on the dispatcher and values that are computed outside the loop; if it is dependent on some value computed in the loop then it is considered to be remainder variant or RV.

If the terminator is RV, then iterations larger than the last valid iteration could be performed in a parallel execution of the loop, i.e., iteration i cannot decide if the terminator is satisfied in the remainder of some iteration $i' < i$. Overshooting may also occur if the dispatcher is an induction, or an associative recurrence, and the terminator is RI. An exception in which overshooting would not occur is if the dispatcher is a monotonic function, and the terminator is a threshold on this function, e.g., $d(i) = i^2$, and $te(i) = d(i) < V$, where V is a constant, and d(j) and te(j) denote the dispatcher and the terminator, respectively, for the jth iteration. Overshooting can also be avoided when the dispatcher is a general recurrence, and the terminator is RI. For example, the dispatcher tmp is a pointer used to traverse a linked list, and the terminator is (tmp = null) (see Figure 1(b)). In the most general case, the exit from a while loop may be caused by one of many termination conditions; this situation will require a combination of several solutions.

From the discussion above we conclude that the techniques

<table>
<thead>
<tr>
<th>Loop Terminator</th>
<th>Dispatcher induction</th>
<th>Dispatcher recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mono</td>
<td>P</td>
</tr>
<tr>
<td>RI</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>RV</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 1: A taxonomy of while loops and their dispatcher’s potential for parallel execution. The table, mono is monotonic, OV is overshoot, P is parallel, N is no, Y is yes, and pp means parallelizable with a parallel prefix computation.
needed to parallelize a \texttt{while} loop depend on the type of its \texttt{dispatcher} and \texttt{terminator}. We can therefore summarize our discussion through the taxonomy of \texttt{while} loops given in Table 1.

3 Parallelizing the Dispatcher

Clearly, the most important factor affecting the amount of available parallelism in a \texttt{while} loop (assuming no cross-iteration dependences) is the amount of parallelism available in its dispatching recurrence. To aid our analysis of the dispatching recurrence, it is convenient to extract, at least conceptually, this recurrence from the original \texttt{while} loop by distributing [20] the original loop into two \texttt{do} loops with conditional exits:

1. A loop that evaluates the terms of the dispatcher (recurrence) and any termination condition that is strongly connected to the dispatcher.

2. A loop consisting of the remainder loop which uses the values of the recurrence (computed by the first loop), and its associated termination condition, if any.

Note that the original set of termination conditions is distributed appropriately to the two loops. Thus, the first loop may or may not have a termination condition, and the second loop is either a simple \texttt{do} loop, or a \texttt{do} loop with a conditional exit.

In order to perform the data dependence analysis necessary for loop distribution all array references in the \texttt{while} loop have to be associated with a loop counter. We remark that a proper distribution is not possible ([10]) if the dependence structure of body of the loop consists of a single strongly connected component. In either case, for the purposes of parallelizing the dispatcher, the techniques proposed in the sequel remain the same.

Once the dispatcher has been extracted we can attempt to parallelize it. As discussed in the previous section, the extent to which this is possible depends upon the form of the recurrence itself. In its most general form a recurrence can be evaluated only through a sequential method. However, if the recurrence is associative, then parallel algorithms like parallel prefix computations can speed the task of computing its terms by a significant factor, and if the recurrence is an induction, then its evaluation can be done in fully concurrent mode by evaluating its closed form.

We now present techniques that can be used to extract the maximum available parallelism from \texttt{while} loops with one dispatching recurrence: loops with multiple recurrences are treated in Section 6. For the cases in which the dispatcher is not an induction, our methods assume that the dispatching recurrence is fully determined before loop entry (e.g., if the dispatcher is traversing a linked list, no list elements may be inserted or deleted during loop execution). Although not all of our methods are fully parallel, they can yield very good speedups—especially if a significant amount of work is performed in the loop body.

We describe the methods without addressing the overshooting problem, and then discuss in Section 4 how they can be augmented to “undo” any iterations that overshoot the termination condition. We also assume that there are no cross-iteration dependences in the loop other than those associated with the dispatcher. This restriction is removed in Section 5 where we describe how \texttt{while} loops can be speculatively executed in parallel by combining our methods with run-time techniques for detecting the presence of cross-iteration dependences in the loop.

Finally we should consider the case when the loop evaluating the recurrence does not contain a termination condition and therefore does not in itself impose an upper limit on the number of terms to be computed. In this case an upper bound can be inferred from the body of the \texttt{while} loop. If that is not possible then the two distributed loops can be executed in a strip-mined fashion until the termination condition is reached, effectively limiting the number of precomputed recurrence terms to the length of the strip.

3.1 The Dispatcher is an Induction

In this section we consider a \texttt{while} loop in which the dispatcher \(d(i)\) is an induction of the generic form:

\[
d(i) = c \ast i + b
\]

where \(c\) and \(b\) are constants. To simplify our discussion, we assume that the dispatcher of the \(i\)th iteration is \(i\), i.e., \(d(i) = i\). The fact that all processors can evaluate the dispatcher simultaneously from a closed form solution of the induction relation makes loop distribution and precomputation of the recurrence terms unnecessary.

In this method, referred to as \textit{Induction-1}, the loop is run as a \texttt{doall} and a test of the termination condition of the \texttt{while} loop is inserted into the loop body (see Figure 2). During the parallel execution, each processor keeps track of the lowest iteration executed so far and issues a \texttt{QUIT} operation when the processor has completed its execution. Once a \texttt{QUIT} command is issued by an iteration, all iterations with loop counters less than that of the issuing iteration will be canceled and removed from the loop. If multiple \texttt{QUIT} operations are issued, then the iteration with the smallest loop counter executing a \texttt{QUIT} will control the exit of the loop. This method is shown as \textit{Induction-2} in Figure 2.

3.2 The Dispatcher is an Associative Recurrence

We now consider a \texttt{while} loop in which the dispatcher is an associative recurrence. Such dispatchers can have the form:

\[
x(i) = a \ast x(i - k) + b \quad \text{or} \quad x(i) = a \ast x(i - k) + b
\]

where \(i = 1, n\) and \(a, b\) and \(k\) are constants. The terms of this relation can be evaluated for \(i = 1, n\) using a parallel prefix computation. This technique has been well documented in the literature ([14]) and gives a logarithmic speedup, i.e., it can be done in \(O(p + \log p)\) time, where \(p\) is the number of processors and \(n\) is the number of terms to be computed. Thus, after loop distribution, the first loop can be transformed into a parallel prefix
Unfortunately, this cannot be done in loop last valid iteration in order to decide which iterations to undo. However, if this had not been the case, then overshooting might have occurred and we would have also needed to find the threshold function and the dispatcher is monotonic increasing. Thus, if there is insufficient parallelism available in the loop remainder, then the original while loop should be executed sequentially. For simplicity, we describe the methods as applied to a while loop that traverses a linked list.

We first notice that when loop distribution is applied the evaluation of the dispatcher is completely sequential, i.e., we cannot perform a parallel prefix computation. In this case, since the parallel execution of the remainder cannot be started before all the terms of the dispatcher have been computed sequentially, it is not clear that the restructuring of the while loop into a sequential dispatcher loop and a parallel remainder will be beneficial. This is especially true if the terminator is RV since the loop distribution scheme would either involve moving portions of the parallel remainder containing the termination condition to the sequential recurrence loop, or entail the sequential computation of unneeded terms of the dispatcher (those beyond the last iteration) which are stored in additional memory. It is possible that strip-mining the loop could improve these costs for RV-type terminators. However, this option would drastically increase the overhead of parallelization since the strips would then be executed as a doall, separated by synchronization barriers. In fact, it is even possible that a slowdown could occur due to this increased overhead.

We now describe several methods that enable iterations of the loop body to be executed concurrently but do not use loop distribution. One simple method, referred to as General-1, is to serialize the accesses to the next(·) operation. This technique is equivalent to hardware pipelining which has been well studied in the literature [9]. The cost of synchronization may make this scheme unattractive. A method, General-2, which avoids explicit serialization, is to compute the whole recurrence in each processor in private storage and assign to processor i the privatized values k of the recurrence such that $k = i \mod nproc$, where nproc is the total number of processors. A third method, General-3, dynamically assigns iterations to the processors like General-1, and also avoids explicit serialization like General-2. In this method, each processor records the last iteration that it processed (prev) and the value of the recurrence at that point (pt). Then, when it is assigned a new iteration i, it calculates the values of the recurrence between prev and i. Examples of all three methods for the while loop of Figure 1(b) are shown in Figures 4 and 5.

We first contrast the loop distribution approach with the general strategy of embedding the sequential evaluation of the dispatcher inside the parallel execution of the loop as is done in the other methods described above. Notice that the performance of both strategies is likely to be similar for loops in which the terminator is RI, i.e., when overshooting is not possible. However, when

![Diagram](image_url)
the terminator is RV, the loop distribution approach would prove to be inferior due to the reasons mentioned above, i.e., the extra sequential computation performed in loop 1, or when strip-mining the costs of the associated doall s and synchronizations, none of which are concerns for the other methods.

We now consider the relative advantages/disadvantages of the methods that do not use loop distribution. In addition to the fact that General-1 explicitly serializes accesses to next(), and no such serialization is used in General-2 or General-3, there are some other differences between the methods. First, in General-1 the recurrence is computed (the list is traversed) just once by all processors cooperatively, but in General-2 and General-3 each processor computes the entire recurrence. Second, in General-1 and General-3 the values of the recurrence are dynamically allocated to the processors, but in General-2, processor i, 0 ≤ i < nproc, is statically assigned values congruent to i mod nproc. Another point, related to this last difference, is that the iteration execution pattern of the methods that dynamically assign iterations to processors (General-1 and General-3) may be quite different from that of General-2 that statically assigns iterations to processors. In particular, the span of iterations (i.e., difference between the lowest and smallest iteration numbers) that are executing at any given time might be larger for the static assignment method than for the dynamic assignment method. If the termination condition of the loop is RV, then it is likely that more iterations would need to be undone in the static assignment method than in the dynamic assignment methods.

In the example while loop from Figure 1(b), no overshooting occurs because the termination condition is RI. However, if the termination condition had been RV, then overshooting might have occurred and in order to determine which iterations needed to be undone, we would have also needed to find the last valid iteration. This could be done in the same manner as shown in Figure 2 for Induction-1. With the loop distribution method the performance would be taxed additionally with the serial computation of the overshot values of the dispatcher.

4 Undoing Iterations that Overshoot

Perhaps the easiest method for “undoing” iterations that overshot the termination condition is to checkpoint prior to executing the doall, and to maintain a record of when (i.e., iteration number) a memory location is written during the loop. Note that since all iterations of the while loop have been assumed to be independent, each memory location will be written during at most one iteration of the loop. Then, after the doall has terminated and the last valid iteration is known, the work of iterations that have overshot can be undone by restoring the values that were overwritten during these iterations. This solution may require as much as three times the actual memory needed by the original while loop: one copy for checkpointing, one for the actual loop data, and one for the time-stamps. It is possible that this increase in memory requirements might degrade the performance of the parallel execution of the while loop. However, in some situations the memory usage is quite reasonable and, as we will show in Section 8, this scheme performs very well.

It might be possible to reduce the cost of checkpointing by identifying and checkpointing a point of minimum state in the program prior to the parallel execution of the while loop. Alternatively checkpointing could be avoided by privatizing all variables in the loop, copying in any needed values, and copying out only those values that are live after the loop and have time-stamps less than or equal to the last valid iteration. Privatized variables need not be backed up because the original version of the variable can serve as the backup since it is not altered during the parallel execution. If the access pattern of any array in the loop is known to be sparse, then the memory requirements could be reduced by...
using hash tables for the private version of the array. Less memory would be needed in this case since only the elements of the array accessed in the loop would be inserted into the hash table.

A simple way to reduce the memory requirements is to strip mine the loop, i.e., execute the first s iterations, then the next s iterations, etc., for some suitable value of s. Then, the memory needed to maintain the time-stamps would be bounded by the product of s and the number of write accesses performed in an iteration. However, this method would introduce global synchronizations and potentially reduce significantly the amount of obtainable parallelism. A better method of controlling memory usage at the application level is discussed in section 7.

Finally, we mention that time-stamping can be avoided completely if one is willing to execute the parallel version of the while loop twice. First, the loop is run in parallel to determine the number of iterations (using one of the methods of Sections 3.1-3.3). Then, since the number of iterations is known, the second time the loop can simply be run as a doall.

5 Unknown Cross-Iteration Dependences

We now consider while loops for which the compiler cannot statically determine the access pattern of a shared array A that is referenced in the loop. The dependences between the statements referencing the shared array may be difficult and/or impossible for the compiler to analyze for a number of reasons: very complex subscript expressions which could only be computed statically through deeply nested forward substitutions and constant propagations across procedure boundaries, nonlinear subscript expressions (a fairly rare case) and, most frequently, subscripted subscripts.

The iterations of such a loop can be executed in parallel, without synchronization, if and only if the desired outcome of the loop does not depend in any way upon the execution ordering of the data accesses from different iterations. In order to determine whether or not the execution order of the data accesses affects the semantics of the loop, the data dependence relations between the statements in the loop body must be analyzed [15, 12, 2, 20, 23]. In related work, we have proposed run-time techniques, called the Privatizing Doall (PD) test [16] and the more powerful LRPD test [17], for detecting the presence of cross-iteration dependences in a loop. These techniques were developed to test at run-time whether a do loop could be executed as a doall. However, the tests can also be adapted to detect cross-iteration dependences in a while loop since such a loop is essentially just a do loop with an unknown iteration space. Although, we do not discuss it here due to lack of space, we note that these techniques can also be used to validate the powerful privatization and reduction parallelization (LRPD test only) transformations in while loops (see [18]).

Before discussing how the PD test is used for while loops, we first need to briefly describe the types of operations it performs, and the data structures it uses (see [16] for a complete description of the test). The PD test is applied to each shared variable referenced during the loop whose accesses cannot be analyzed at compile-time. For convenience, we discuss the test as applied to a shared array A. Briefly, the test traverses shadow array(s) during the speculative parallel execution using the access pattern of A, and after loop termination performs some final analysis to determine whether there were cross-iteration dependences between the statements referencing A. Separate shadow arrays A_w and A_r are used to keep track A’s read and write accesses, respectively. For each access (read or write) to A, some simple computation is performed on the appropriate shadow array. For example, the first time an element of A is written in an iteration, the corresponding element in A_w is marked. The analysis performed after loop termination, which determines whether there were any cross-iteration dependences between statements referencing A, involves computations such as counting the total number of marked elements in A_w, and determining whether any element is marked in both A_w and A_r. It is important to note that the post-execution analysis is fully parallel, regardless of the nature of the original loop. The time required by the PD test is $O(a/p + \log p)$, where p is the number of processors, and a is the total number of accesses made to A during the loop.

We now discuss how to use the PD test on while loops. The general strategy is to combine the PD test (applied on the remainder loop) with the techniques described in Sections 3.1-3.3 for transforming while loops into doall loops. If it is known that the parallel execution of the while loop will not overshoot, then the shadow variable accesses of the PD test can be inserted directly into the doall loop that is created for the while loop. When overshooting may occur, a simple solution is to initially assume that there are no cross-iteration dependences, and execute the loop twice. First, the loop is run in parallel to determine the number of iterations (using one of the methods of Sections 3.1-3.3), and once the number of iterations is known the resulting do loop can be speculatively parallelized using the PD test as mentioned above. In order to avoid executing the parallel version of the while loop twice, the PD test can be incorporated directly into the while loop methods as follows. We time-stamp all writes to the shadow arrays used by the PD test and maintain the minimum iteration that marked each element. Everything proceeds as before, except that in the post-execution analysis of the PD test, those marks in the shadow arrays with minimum time-stamps greater than the last valid iteration are ignored.

If the termination condition of the while loop is dependent (data or control) upon a variable with unknown dependences, then special care must be taken. If it turns out that there are no cross-iteration dependences in the loop, then the techniques mentioned above would work as before. However, if there is a dependence between statements in different iterations accessing some variable, and the termination condition is dependent upon that variable, then some difficulties may arise if the loop is executed in parallel. For example, the last valid iteration of the loop might be incorrectly determined, or, even worse, the termination condition might never be met (an infinite loop). In this situation, the best solution may be strip-mining the loop, and running the PD test on each strip.

6 Loops with Multiple Recurrences

In the previous sections we made the simplifying assumption that the while loop had only one recurrence (dispatcher) and proposed methods for parallelizing it. In this section we extend our methods to the case when the loop under consideration contains
an arbitrary number of statically detectable recurrences.

After constructing the data dependence graph of the loop, we distribute the initial loop into a loop formed by the hierarchically top level recurrences and a second loop containing the remainder of the statements. The recurrence(s) extracted are then parallelized (if possible) with the methods described in Section 3. The second loop is then treated in the same way, with the difference that we have already computed its data dependence graph. This means that, for analysis purposes, we now extract the top level recurrence and attempt to parallelize it. Essentially this method amounts to a recursive application of the techniques described in the previous sections. This recursion stops after all recurrences have been extracted from the original while loop. The remaining loop may take several forms:

- A fully parallel loop
- A sequential loop whose dependence structure is not of the form of any recurrence detectable by the compiler
- A loop whose access pattern cannot be analyzed statically

Once this loop distribution is completed, we attempt to fuse the loops according to the following criteria: maximize granularity, maximize the code to be executed in parallel, and balance the overhead of parallelization with that of executing pseudo-parallel code (see Section 3.3). The method proceeds bottom-up (based on the data dependence graph) and analyzes the nature of the loops. If the first loop is sequential, we fuse it with all following contiguous sequential loops. When the first parallelizable loop is found, we generate a distinct, new loop to which all next contiguous parallel loops are fused. If a new sequential loop is encountered, it is fused to the existing block. The decision of whether to generate parallel code for the newly obtained block (using one of the methods of Section 3.3) depends on its potential parallel performance. In particular, if the overhead of parallelization is not offset by the parallel execution, then sequential code should be generated and fused to the immediately preceding sequential block, if any. In the end this algorithm produces a parallel loop if enough parallelism is available followed by a sequential loop if any [18]. We can exploit the availability of dependence graph by scheduling the sequential loops in a doacross fashion.

We remark that fusing associative recurrences evaluated by parallel prefix computations must be done carefully if there is data flow between the recurrences. Similarly, loops parallelized with the PD test should be fused with care — if at all — to loops that they dominate in the data dependence graph since the cost of a failed test will be increased for the resulting loop.

7 Strategies for Applying the Techniques

It can be shown that the performance gain (speedup) from our techniques ranges from a minimum of 20 — 25% of the ideal speedup to nearly 100% of the ideal speedup (see [18]). One method to minimize the risk of parallelizing a while loop is to execute the loop sequentially in one processor and execute it in parallel using the rest of the processors.

Thus far we have not addressed the fact that our techniques might cause an increase in the working set size if checkpointing and time-stamps are needed, i.e., if the loop might overshoot. We now briefly mention some methods that can be used to address this problem (more details are provided in [18]). One simple way to reduce the additional storage is to strip-mine the loop. This storage can be further reduced using a more sophisticated statistics-enhanced strip-mining in which only the values written in iterations after a certain iteration \(n \) in the strip are time-stamped; the iteration \(n \) is selected by the compiler using a statistical estimate of the number of valid iterations contained in the current strip, i.e., the compiler estimates which iteration might be the last valid iteration in the while loop.

A drawback of strip-mining methods is that they introduce rigid synchronization barriers between the doalls. Such synchronizations can be avoided using resource controlled self-scheduling. Suppose we vary the window size (the difference between the minimum iteration that has not finished execution and the maximum iteration that has finished) depending upon the current memory usage of the application: the window is increased if more memory can be used without degrading performance, and is decreased if less memory should be used to improve performance. The window can be dynamically adjusted by the program itself, since the program could easily monitor how much memory is used by its data structures. Note that this is different from operating system monitors that watch such things as network traffic, I/O requests, or paging activity.

8 Experimental Results

In this section we present experimental results obtained on a modestly parallel machine with 8 processors (Alliant FX/80 [1]) using a Fortran implementation of our methods. Our results scale with the number of processors and data size and they should be extrapolated for MPPs, the actual target of our methods.

We considered five while loops that could not be parallelized by any compiler available to us; two loops are from the PERFECT Benchmarks [3], two loops are from MA28, a sparse non-symmetric linear solver [5], and one loop is extracted from MCSPARSE, a parallel version of a non-symmetric sparse linear systems solver [6, 7]. Our results are summarized in Table 2. For each method applied to a loop, we give the speedup that was obtained, and, mention whether backups and time-stamping were necessary. Whenever necessary, we performed a simple preventive backup of the variables potentially written in the loop. In some cases, the cost of saving/restoring might be significantly reduced by using another strategy. In addition to the summary of results given in Table 2, we show in Figures 6 through 13 the speedup measured for each loop as a function of the number of processors used.

Overall, our results show that significant speedups can be obtained by parallelizing while loops using our methods. We now make a few remarks about individual loops for which Table 2 does not give complete information.

Loop 40 in subroutine LOAD from SPICE loads the device models for capacitors. Since our interest is in measuring the performance of our linked list traversal techniques, the run-time overhead associated with run-time dependence testing has not been included in the reported results. Even though the body in Loop 40 does little work, we obtained a very good speedup (Figure 6).
9 Related Work

We can find in the literature several efforts improve the performance of while loop execution. In [19] the authors have proposed some methods for achieving vector-like performance on multiple issue pipelined machines. They do not try to address the problem for large multiprocessors.

Some techniques for solving certain types of recurrences in parallel were proposed by Harrison in [8] for Lisp-like languages. His main goal was to parallelize list operations (e.g., traversing linked lists). Generally, his methods assume that the terminator is RI and it is known that there are no cross-iteration dependences in the loop. In the context of his proposed framework ([8]), lists consist of linked chunks of contiguously allocated memory locations, and each chunk has a header that stores the number of memory locations in that chunk. In this way the evaluation of the dispatcher (i.e., the traversal of the list) can be optimized by using a sequential prefix computation (on the chunks) to assign portions of the recurrence (chunks) to processors for parallel evaluation.

We note that this optimization requires the dynamic memory allocation scheme proposed by the author (in which list elements are allocated contiguously). Therefore, for languages such as FORTRAN which rely mainly on static memory allocation (i.e., each list element is contained in a separate chunk), this method could not be used to parallelize the evaluation of the dispatcher, i.e., it would degenerate to the naive loop distribution method mentioned for general recurrences in Section 3.3. In fact, the author mentions that if the chunk sizes become too small, then the result might be an “inefficient restructured version of the loop that contains too little parallelism to recover the expense [invested]” [8]. We note that when the entire list resides in a single chunk (i.e., an array), then this method is equivalent to the one described in Section 3.2 for associative recurrences, i.e., loop distribution together with a parallel prefix computation to evaluate the dispatcher in parallel.

The only previous work of which we are aware (except some early work by [20]) for parallelizing while loops in languages such as FORTRAN for multiprocessors is due to Wu and Lewis [22]. One method they propose is to pipeline the loop by executing it in daacross fashion, and to enforce any cross-iteration data dependences with explicit synchronization operations. When the terminator is RI and it is known that there are no cross-iteration data dependences in the loop, they suggest using the naive form of loop distribution mentioned in Section 3.3 (also implicit in
For the case of RV termination conditions no methods have been proposed in the past. Also, the problem of testing for cross-iteration data dependencies has not been addressed before.

10 Conclusion

In this paper, we have shown that lack of knowledge about the iteration space of a loop does not preclude parallelization. We have demonstrated this by giving techniques for concurrently executing while loops and do loops with conditional exits. Our methods can even be used to obtain significant speedups for loops that involve linked list traversals without using global synchronization or explicitly sequential code — something that has not been done before. This is an important problem since linked list traversals arise frequently in loops with irregular access patterns, such as sparse matrix computations. In many cases, these methods have no associated overhead or side effects. Our techniques can be applied even when the dependence relations between the iterations of the loop cannot be analyzed at compile-time. In this case, an efficient run-time test for cross-iteration dependences is inserted into the parallel version of the loop, and the outcome of the test determines whether the parallel execution was valid, or if the loop must be re-executed sequentially.

We feel our framework for while loop parallelization represents a step toward providing while loop counterparts for the existing constructs for parallel execution of do loops: while-doall, while-doacross, and while-doany. Based on our experience, these new constructs would be useful extensions to present parallel languages.

Our experimental results show that the techniques yield significant speedups for real loops — even on a modestly parallel machine like the Alliant FX/80. However, we believe that the true significance of these methods will be the increase in real speedup obtainable on massively parallel processors (MPPs). The performance gain (speedup) from our techniques ranges from a true significance of these methods will be the increase in real speedup obtainable on massively parallel processors (MPPs). The machine like the Alliant FX/80. However, we believe that the extensions to present parallel languages.

while-doall the existing constructs for parallel execution of while loops:

while-doacross, and while-doany. Based on our experience, these new constructs would be useful extensions to present parallel languages.

Our experimental results show that the techniques yield significant speedups for real loops — even on a modestly parallel machine like the Alliant FX/80. However, we believe that the true significance of these methods will be the increase in real speedup obtainable on massively parallel processors (MPPs). The performance gain (speedup) from our techniques ranges from a minimum of $20-25\%$ of the ideal speedup to nearly 100% of the ideal speedup. If the target architecture is an MPP with hundreds, or in the future thousands, of processors, then even the minimum expected speedup could easily reach into the hundreds. We have also shown that the potential payoffs remain large when the cross-iteration dependences are analyzed at run-time. Therefore, our conclusion is that as long as there is enough parallelism available in the while loop, our techniques should be applied.

To bias the results even more in our favor, we would like to avoid parallelizing loops that do not have enough available parallelism. For this reason it would be useful to estimate the number of iterations in the loop using information such as branch statistics — data which can easily be obtained for any program. Also, in order to decrease the probability of attempting to parallelize a loop that is in fact sequential, our methods should make use of run-time collected information about the parallel/not parallel nature of the loop. In all cases, specialized hardware features could greatly reduce the overhead introduced by the methods.

References

