
Incremental Map Generation (IMG)

Dawen Xie, Marco Morales, Roger Pearce, Shawna Thomas, Jyh-Ming Lien,
and Nancy M. Amato

Parasol Lab, Department of Computer Science,
Texas A&M University, College Station, TX USA
{dawenx, marcom, rap2317, sthomas, neilien, amato}@cs.tamu.edu

Abstract: Probabilistic roadmap methods (prms) have been highly successful in
solving many high degree of freedom motion planning problems arising in diverse
application domains such as traditional robotics, computer-aided design, and com-
putational biology and chemistry. One important practical issue with prms is that
they do not provide an automated mechanism to determine how large a roadmap
is needed for a given problem. Instead, users typically determine this by trial and
error and as a consequence often construct larger roadmaps than are needed. In this
paper, we propose a new prm-based framework called Incremental Map Generation
(img) to address this problem. Our strategy is to break the map generation into
several processes, each of which generates samples and connections, and to continue
adding the next increment of samples and connections to the evolving roadmap un-
til it stops improving. In particular, the process continues until a set of evaluation
criteria determine that the planning strategy is no longer effective at improving the
roadmap. We propose some general evaluation criteria and show how to apply them
to construct different types of roadmaps, e.g., roadmaps that coarsely or more finely
map the space. In addition, we show how img can be integrated with previously
proposed adaptive strategies for selecting sampling methods. We provide results
illustrating the power of img.

1 Introduction

Automatic motion planning has applications in many areas such as robotics,
computer animation, computer-aided design (CAD), virtual prototyping, and
computational biology and chemistry. Although many deterministic motion
planning methods have been proposed, most are not used in practice because
they are computationally infeasible except for some restricted cases, e.g., when
the robot has few degrees of freedom (dof) [14]. Indeed, there is strong evi-
dence that any complete planner (one that is guaranteed to find a solution or
determine that none exists) requires time exponential in the robot’s dof [21].

For this reason, attention has focused on randomized approaches that sam-
ple and connect points in the robot’s configuration space (C-space). Such

2 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

Pass

Fail

Build/Expand
Roadmap Evaluate

Roadmap
Query Roadmap

Fig. 1. Flow diagram for Incremental Map Generation (img).

methods include graph-based methods such as the probabilistic roadmap meth-

ods (prms) [13] (along with their various extensions and variants [1,4,5,9,25])
and tree-based methods such as Ariadne’s Clew algorithm [16], RRT [15], and
Hsu’s expansive planner [10]. These methods have been highly successful in
solving challenging problems with many dof that were previously unsolvable
and thus have become the method of choice for a wide range of applications.

One important practical issue not addressed by the prm framework is
that it does not provide an automated mechanism to determine when to stop.
Ideally, planning should be terminated when the planner is no longer adding
useful information to the roadmap. In practice, users select a roadmap size
they believe is appropriate, usually by trial and error. This often results in
larger maps than needed or in the construction of several maps before obtain-
ing one that meets the user’s needs. While there are a number of reasons for
this disconnect between the ideal and practice, perhaps the most important
has been the lack of effective techniques for measuring roadmap improvement.

In this paper, we propose a prm-based framework called Incremental Map
Generation (img) that addresses this issue. In particular, we advocate a strat-
egy that measures the improvement achieved over time in an evolving roadmap
to automatically determine when to stop (or perhaps change) the planner.
This is implemented by iteratively building the roadmap until it satisfies a set
of evaluation criteria (see Figure 1). The main difference from the traditional
two-phase prm method [13] is that we partition the roadmap construction
into several iterations (expansion steps), each of which adds samples and con-
nections to the evolving roadmap, and we add a new phase called “roadmap
evaluation” which tests if the roadmap satisfies some evaluation criteria (stop-
ping condition). If the roadmap passes the stopping condition, then roadmap
construction finishes. Otherwise, another iteration is performed to expand the
roadmap by adding additional samples and connections. The framework can
accept a broad range of stopping criteria, which can be customized for par-
ticular applications or user preferences. For example, the criteria can be as
simple as satisfying a specified set of queries, or more complicated such as
monitoring graph topology.

img has several important features, including:

• Automatic determination of roadmap size. The most important feature of
img is that it provides a mechanism to incrementally construct roadmaps
and to automatically determine when construction should be halted.

Incremental Map Generation (IMG) 3

• Evaluation criteria. A key requirement for img is effective evaluation crite-
ria that can be efficiently tested during roadmap construction. A contribu-
tion of this work is to propose evaluation criteria for measuring roadmap
quality (e.g., coverage and connectivity) that do not require prior knowl-
edge about the solution (as do, e.g., test queries) and that do not rely on
C-space discretization (so can be efficiently applied to high dof problems).

• Compatibility with existing sampling-based planners. img is not a new sam-
pling method; instead, it is a general strategy that can be used with any
sampling-based planner and, moreover, it provides a natural mechanism
for adaptive planning. For example, each img iteration can use any of the
existing adaptive strategies that utilize multiple planners (e.g., [11,17]) or
different strategies could be chosen for different img iterations.

2 Related work

The general prm methodology [13] consists of a preprocessing phase and a
query phase. Preprocessing, which is done once for a given environment, first
samples points ‘randomly’ from the robot’s C-space, retaining those that sat-
isfy certain feasibility requirements. Then, these points are connected to form
a graph, or roadmap, containing representative paths in the free C-space. The
query phase then connects any given start and goal to the same connected
component of the roadmap, and if successful, returns a path connecting them.

The probability of failing to find a path in a probabilistic roadmap, when
one exists in C-free, decreases exponentially as the number of samples in
the roadmap increases [12]. However, it is difficult to decide beforehand the
roadmap size required in practice.

The coverage and connectivity of an ideal prm roadmap should match
that of its underlying C-space. In [7], coverage and maximal connectivity
achieved by different sampling methods was compared to that of the C-space
being modeled. Coverage indicates how each query can be connected to the
roadmap. If there exists a path in the free C-space between two query con-
figurations, maximal connectivity ensures that a path between them can be
found in the roadmap. The authors evaluate the time needed to adequately
cover and connect the free C-space for various techniques. This work relies on
a discretization of C-space and so cannot be applied to high dof problems.

Since there is no principled mechanism to determine when to stop roadmap
construction, a commonly used evaluation criterion is to predefine a set of rel-
evant queries in each environment and continue building the roadmap until
the query configurations can be connected to the same connected component.
This is helpful in environments where the user knows beforehand such a rep-
resentative query. However, in many situations defining such a query can be
problematic, e.g., in cluttered environments or in higher dof problems such
as the protein folding applications. The stopping criteria we propose can be
applied when it is hard or even impossible to define a representative query

4 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

for a given problem. In the case when such a query is easy to define or when
solving a particular query is the user’s objective, then img can easily use it
as a stopping criterion, i.e., img also supports the traditional query-based
criterion.

A set of metrics are proposed in [18] to estimate how each new sample
improves, or not, the representation of C-space achieved by the planner. With
these metrics, the authors identify three phases common to all sampling-based
planners: quick learning (a coarse roadmap is constructed), model enhance-
ment (the roadmap is refined), and learning decay (most new samples do not
provide additional information). They also demonstrate that the traditional
scheme of testing a set of witness queries, which is commonly used in practice
as a stopping criterion, can be misleading.

Adaptive hybrid prm sampling [11] proposes using a mixture of samplers.
They adapt the mixture of strategies based on each strategy’s past success. In
this work, we incorporate hybrid prm sampling and apply our img framework
to hybrid prm to decide when to stop building the roadmap.

3 Incremental Map Generation (IMG)

We propose a new prm-based framework called Incremental Map Generation
(img) in which we iteratively build a roadmap until it satisfies a set of eval-
uation criteria (see Figure 1). Most importantly, this framework provides a
systematic way to automatically decide when to stop roadmap construction.
Algorithm 3.1 describes img. This framework is simple and general. It can be
customized for a particular application domain or problem by simply varying
the node generation and connection strategies used and the evaluation crite-
ria. In the following sections we discuss two main aspects of our framework:
incremental roadmap construction and roadmap evaluation.

Algorithm 3.1 Incremental Map Generation.

Input. An existing roadmap R, a roadmap evaluator E, the size of a node set, n.
Output. A roadmap R that meets the criteria indicated by E.
1: repeat

2: Initialization. Set parameters for this iteration.
3: Sampling. Generate the new node set (n nodes) and add them to roadmap R.
4: Connection. Perform connection.
5: until R meets criteria in E

3.1 Incremental Roadmap Construction

To build the roadmap incrementally, we first divide roadmap construction into
“sets” of size n; the size, or target number of nodes for each set, is specified
by the user. Then, for each iteration, img performs the following steps.

Incremental Map Generation (IMG) 5

Initialization. In line 2, Algorithm 3.1, in order to ensure the independence
of each set, we seed the random number generator. The seed s is a polynomial
function of the base seed of the program (e.g., the time execution starts), the
type of node generation method used, and the number of sets completed by
that node generation method so far. Calculating the seed in a deterministic
way based on a (possibly random) base seed supports reproducibility given
the same base seed.

Sampling. In line 3, Algorithm 3.1, the sampling strategy selected for that
iteration is applied. Recall that img is not a new sampling method, but rather
is a general strategy that can be applied to any sampling-based planner.

In addition, img provides a natural mechanism for adaptive planning. For
example, each iteration of img could select a different sampling strategy or it
might use one of the recently proposed adaptive strategies that utilize multi-
ple planners (e.g., [11, 17]). To illustrate this feature of img, we incorporated
hybrid prm [11] in our current implementation. In hybrid prm [11], the per-
formance of component samplers is evaluated and the methods with good
performance are chosen to run more frequently. We incorporated hybrid prm

in two different ways: (1) it is simply used as described in [11] as the sampling
method in img, and (2) in each img iteration, an initial phase uses the hybrid
prm strategy to select a planner to use for the remainder of that iteration.

Connection. In line 4, Algorithm 3.1, the connection strategy chosen by
the user is applied to connect the new set of nodes to the existing roadmap.
In the results presented here, we use a variant of the commonly used K-
closest connection strategy. K-closest attempts to connect each node to its
k “nearby” neighbors, but it does not distinguish successful attempts from
failed attempts. Nevertheless, identifying successes and failures in connection
attempts provides some information about the complexity of the local area.
When a node can be connected to most of its neighbors, it indicates that this
node is in an easy to connect area and we probably do not need to try many
connection attempts; on the other hand, if a node fails to be connected to
most of its neighbors, it indicates that this node is in a difficult local area
and it could be useful to try to connect it to more neighbors. In order to
adjust the connection effort based on a node’s local environment, we use a
modified version of K-Closest connection method called L-Success-M-Failure.
In L-Success-M-Failure, the local planner attempts to connect each node to
its l + m “nearby” neighbors, stopping as soon as it has achieved l successful
attempts or m failed attempts.

3.2 Roadmap Evaluation

The other key component enabling automatic determination of roadmap size
is the stopping or evaluation criteria. In this paper, we propose two classes
of evaluation methods: roadmap progress evaluation and application-specific

evaluation. The following sections give examples of evaluators for both classes.

6 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

Roadmap Progress Evaluation

Our roadmap progress evaluators are based on metrics for evaluating roadmap
coverage and connectivity, which have been noted as important properties
by many researchers working with sampling-based planners (see, e.g., [7]).
Here, we are interested in monitoring the contribution of new samples to
the coverage and connectivity modeled by the roadmap. Classification of new
samples provides a mechanism to perform this evaluation as shown in [18].
In [18], every node is classified as it is inserted into the roadmap (see Figure 2).
A node is classified as cc-create if it cannot be connected to any existing
roadmap component. A node is classified as cc-merge if it connects to more
than one connected component (cc) in the roadmap. A node is classified as
cc-expand if it connects to exactly one component in the roadmap and satisfies
an expanding criterion. A node is classified as cc-oversample if it does not fall
in any of the previous categories. In previous work [11, 20], cc-expand and
cc-oversample nodes were not always distinguished, in some cases because it
was considered too expensive to classify a node as cc-expand.

(a)

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

(b)

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������
�������������
�������������

�������������
�������������
�������������

(c)

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���������������
���������������
���������������
���������������
���������������

(d)

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������
�����������
�����������

�����������
�����������
�����������

(e)

Fig. 2. (a) A 2D C-space. Classification of samples as (b) cc-create, (c) cc-merge,
(d) cc-expand, and (e) cc-oversample.

In this work, we use the diameter of the connected components as a mea-
surement of component expansion. The diameter of a cc is the length of the
longest shortest-path in the cc. The diameter is an interesting metric because
its changes correlate with changes in cc-create, cc-merge or cc-expand nodes.
Also, the diameter of a graph can be approximated and is independent of the
distance metric [22]. We let max-diameter be the maximum diameter of all
the ccs and sum-diameter be the sum of the diameters of all ccs. Note that
max-diameter is an approximation of the coverage of the largest connected
component. Similarly, sum-diameter is an approximation of the coverage and
connectivity of all the components in the roadmap. Then we use the rates
of change of max-diameter and sum-diameter to approximate the planner’s
effectiveness in mapping C-space.

In this evaluation method, we stop building a roadmap when the rates of
change of max-diameter and sum-diameter over a certain period of time, e.g.,
k sets of nodes, is smaller than a user-defined threshold, τ , which is used to
define the desired variability in coverage and connectivity (as indicated by the

Incremental Map Generation (IMG) 7

components’ diameters). We compute the max-diameter among all ccs and
the sum-diameter of all the ccs at the end of each node set.

The percentage of change of the max-diameter (PCMAXi) in the ith set
over its k previous sets is computed as:

PCMAXi =

k−1∑

j=0

|MDi−j − MDi−j−1|

MDi−j−1

,

where MDi−j is the max-diameter in the (i − j)
th

node set. We define the
percentage change of the sum-diameter (PCSUMi) over all the components
in a similar way.

Application-Specific Evaluation

The img framework can accept a broad range of stopping or evaluation criteria
customized for particular applications or user preferences. In this section, we
give two examples of application-specific evaluation methods.

Query Evaluation. This evaluator simply determines whether a roadmap
can solve a set of user specified queries. For each query, it attempts to connect
the start and goal to the roadmap and returns successful if they are connected
to the same connected component. The evaluator returns success when all
queries are solved. This type of evaluator is useful when the user wants to
solve a particular set of test problems or for a single query application.

Max-flow Evaluation. Some applications require many paths between two
configurations. For example, motion planning has been recently applied to
study problems in computational biology such as protein folding and transi-
tions [3, 23]. To study how a protein changes between two configurations, we
can examine the probable paths between them in the roadmap. We can define
this as a maximum flow problem on a network. If a roadmap edge weight,
w(e), reflects the likelihood that the protein will move from one configuration
to the next, then we can define edge capacity c(e) as 1/w(e). The evaluator
returns success if the max-flow between the two configurations is above some
user specified threshold f .

4 Experiments

img is not a new sampling method, instead it is a general strategy that can
be applied to any sampling-based planner. We investigate how img automati-
cally builds roadmaps with an appropriate number of samples using different
evaluation criteria. Our experiments use the following sampling methods:

• Uniform random sampling: samples are created by picking random values
for each dof.

8 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

• Gaussian-biased sampling [4]: sets of two samples are created, one uni-
formly at random and the other a distance d away, where d has a Gaussian
distribution. A collision-free sample is added to the roadmap when one is
collision-free and the other is not.

• Bridge-test sampling [9]: similar to Gaussian sampling, it takes two random
samples a distance d apart, where d has a Gaussian distribution, until both
samples are in collision and their midpoint is not. The collision-free sample
is added to the roadmap.

• Obstacle-based sampling (obprm) [1]: samples are generated near C-
obstacle surfaces by first generating a random colliding (resp., collision-
free) sample and searching along a random direction until the sample be-
comes collision-free (resp., in collision).

We implemented all planners with the Parasol Lab motion planning li-
brary developed at Texas A&M University and performed collision detection
with RAPID [8]. For each problem, we built two types of roadmaps: a tree and
a graph. We use the L-Success-M-Failure connection strategy introduced in
Section 3. In particular, we apply a 10-Success-20-Failure connection strategy
for building trees and 5-Success-20-Failure for building graphs. For rigid-body
motion planning, we use two local planners: straight-line and rotate at 0.5 [2],
which translates from the start to the midpoint, rotates to the orientation of
the goal configuration and then translates to the goal configuration. For ar-
ticulated linkage motion planning, we only use the straight-line local planner.
All results were run on 700MHz Intel PIII Xeon processors.

In the following sections, we discuss the performance of img’s roadmap
progress evaluator, the overhead of the img framework, how img and hybrid
prm may be combined, and how img can be tailored to specific applications
such as protein folding.

4.1 Automatically Stopping Roadmap Construction

Here we investigate the performance of the roadmap progress evaluator (see
Section 3.2) in the four different environments shown in Figure 3. For these
experiments, the node set size is 50 samples. After each set, we compute
PCMAXi and PCSUMi. Roadmap construction stops when both PCMAXi

and PCSUMi are below a threshold τ . τ represents the desired roadmap im-
provement over a period of time, i.e., k sample sets. Note that in the beginning
of roadmap construction (during the quick learning stage), there will be large
changes in PCMAX and PCSUM . These changes will drop when the en-
hancement stage begins.

We studied the impact of τ and k on img’s performance for each sampling
method in each environment by varying k with constant τ and alternatively
by varying τ with constant k. Due to space limitations, we only show a subset
of these results. A complete set of results can be found in [26].

Incremental Map Generation (IMG) 9

(a) (b)

(c)

(d)

Fig. 3. Problems studied. (a) Maze environment (wire frame): rigid body robot
must navigate the maze. (b) U shape environment: rigid body robot must navigate
from one chamber to the other. (c) Hook environment: rigid body robot must rotate
to move from one side of the walls to the other. (d) Hook manipulator environment:
articulated linkage (10 dof) must move from one end to the other.

A Case Study: Varying k with Constant τ

Figure 4 shows img’s performance at building both trees and graphs for each
planner in the hook environment. Here we vary k (the number of sample sets
over which the percentage change in diameter is computed) while keeping τ
constant at 0.0125. In each plot, the upper two curves show the sum-diameter
and max-diameter as a function of roadmap size for a tree, and the lower two
curves for a graph. The circles indicate where img would stop roadmap con-
struction for various k. For example, the circle labeled k1, 1250 in Figure 4(a)
shows that with k = k1 = 5, img would stop construction of the tree after
1250 samples. Similarly, the circle labeled k1, 2150 indicates img would stop
construction of the graph after 2150 samples with the same k value. All plots
use the same random seed.

From the evolution of max-diameter and sum-diameter, it is clear that the
roadmap grows rapidly in the beginning and then experiences a long period of
refinement until both stabilize. As expected, the diameter in the tree roadmap
is larger than the diameter in the graph roadmap. This corresponds to the
graph roadmap having shorter and smoother paths. An interesting observation
from the graph roadmap is that the “path refinement” stage is clearly shown
as the diameters drop.

Overall, we see that for a fixed τ , increasing k causes the planner to stop
later because larger k values allow img to capture changes over longer periods.
This trend appears in all experiments we ran. This means that we can decide
how long we want to refine the roadmap by what value we choose for k. It is
also clear that for a given k value, different planners stop at different points.
In particular, BasicPRM (Figure 4(a)) stops the earliest. The intuition behind
this is that BasicPRM is the slowest to progress in terms of samples, and thus
needs larger values of k to capture similar changes.

10 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000 12000 14000 16000

di
st

an
ce

samples (50 per set)

Hook environment: Basic PRM. tau=0.0125. k: k1=5, k2=7, k3=10, k4=20, k5=30.

graph: max diameter
graph: sum diameter

tree: max diameter
tree: sum diameter

k1,2150

k2,2550

k3,3550
k4,6900

k5,13600

k1,1250

k2,2500

k3,2650

k4,5000

k5,10350

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
st

an
ce

samples (50 per set)

Hook environment: Bridge Test. tau=0.0125. k: k1=5, k2=7, k3=10, k4=20.

graph: max diameter
graph: sum diameter

tree: max diameter
tree: sum diameter

k1,2650 k2,2750

k3,3500

k1,700

k2,1700

k3,3500
k4,4800

(b)

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

di
st

an
ce

samples (50 per set)

Hook environment: Gauss. tau=0.0125. k: k1=5, k2=7, k3=10.

graph: max diameter
graph: sum diameter

tree: max diameter
tree: sum diameter

k1,2800

k2,3450

k3,8700

k1,1650

k2,2800

k3,6600

(c)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
st

an
ce

samples (50 per set)

Hook environment: OBPRM. tau=0.0125. k: k1=5, k2=7, k3=10.

graph: max diameter
graph: sum diameter

tree: max diameter
tree: sum diameter

k1,2400
k2,3550

k1,2300 k2,2400 k3,3600

(d)

Fig. 4. Performance of img for the hook environment for various planners and k

values with τ = 0.0125. (a) BasicPRM; unable to solve the witness query with 15000
samples. (b) Bridge test; witness query solved at 550 samples. (c) Gauss; witness
query solved at 3600 samples. (d) OBPRM; witness query solved at 500 samples.

Finally, we defined a witness query from the first chamber to the last
chamber. We use this query in the query evaluation method as described in
Section 3.2. BasicPRM is unable to solve the query after 15000 samples, while
Bridge test solved it after 550 samples, Gauss after 3600 samples, and OBPRM
after 500 samples1. It is clear from Figure 4 that the max-diameter and sum-
diameter still experience large changes after solving the witness query. This
confirms the observation in [18] that solving queries is not enough by itself to
evaluate whether the planner is still making progress in mapping the space.

A Case Study: Varying τ with Constant k

Here we study the effect of τ (a threshold for desired variability in coverage and
connectivity) while fixing k at 10 for OBPRM [1] in different environments.
Figure 5 shows results for both trees and graphs using the same random seed.
As before, the circles indicate where img would stop roadmap construction
for the various τ .

1 The tree and graph roadmaps solve the query at the same point since we used
the same random seed.

Incremental Map Generation (IMG) 11

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

di
st

an
ce

samples (50 per set)

Hook Manipulator environment: OBPRM. k=10. tau: t1=0.025, t2=0.0062.

graph: max diameter
graph: sum diameter

tree: max diameter
tree: sum diameter

t1,7000 t2,14900

t1,4550

t2,11850

(a)

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

di
st

an
ce

samples (50 per set)

Maze environment: OBPRM. k=10. tau: t1=0.025, t2=0.0062, t3=0.0007.

graph: max diameter
graph: sum diameter

tree: max diameter
tree: sum diameter

t1,2900
t2,5700 t3,7700

t1,2900 t2,3100

t3,4300

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

di
st

an
ce

samples (50 per set)

U environment: OBPRM. k=10. tau: t1=0.025, t2=0.0062, t3=0.0007.

graph: max diameter
graph: sum diameter

tree: max diameter
tee: sum diameter

t1,3550

t2,3700

t3,4350

t1,2500
t2,t3,4500

(c)

Fig. 5. Performance of img with OBPRM for several environments and τ values
when k = 10. (a) Hook manipulator environment; unable to solve witness query in
20000 samples. (b) Maze environment; witness query solved at 3750 samples. (c) U
environment; witness query solved at 2850 samples.

Overall, decreasing τ requires the planner to run longer because smaller τ
values signify a smaller tolerance for diameter variability. Thus, a smaller τ
means the planner has to run longer before the learning stabilizes enough to
cause the diameter changes to fall below the threshold.

We set witness queries as described in Figure 3. OBPRM is unable to solve
the query for the hook manipulator after 20000 samples, while it solved the
query for the maze environment after 3750 samples and the U environment
after 2850 samples. For the hook manipulator (Figure 5(a)), we observe that
τ = 0.025 roughly marks the end of the “quick learning” stage as it transitions
into “model enhancement.” Note, the planner remains in “model enhance-
ment” for the entire duration. This is reflected by the fact that τ = 0.0007
was never satisfied and the witness query was never solved. In Figures 5(b)
and 5(c), “learning decay” is clearly marked with τ = 0.0007.

Overhead

The overhead incurred by the calculation of roadmap diameter as an evalu-
ation of roadmap progress is affordable. We show in Table 1 the percentage

12 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

of total running time spent in the diameter computation for the hook envi-
ronment for the case when the roadmap can contain cycles (a graph). The
diameter computation is performed after every 50 samples and for the tree
roadmap case is exactly computed by a Dijkstra search. In the cyclic graph
case, the diameter is approximated using two Dijkstra searches, with the sec-
ond search starting from the furthest node found during the first search. While
more accurate approximations of cyclic graph diameters exist [6], this was suf-
ficient for our experiments.

Table 1. Diameter computation as a percentage of total running time in the Hook
environment. Diameter computation was performed after every 50 samples. For all
methods, the overhead for img is small, even for large numbers of samples.

Sampling Number of Samples

Method 100 500 1000 2000 4000 8000

BasicPRM 0.20 1.04 1.86 3.16 4.75 6.50

OBPRM 0.00 0.44 0.93 1.70 2.84 4.41

Gauss 0.09 0.48 0.95 1.78 3.13 5.39

Bridge test 0.02 0.09 0.19 0.45 0.99 1.93

Hybrid PRM 0.08 0.34 0.71 1.47 2.70 4.64

Combining img and Hybrid prm

The img framework can be used with any sampling strategy. In this section,
we incorporated hybrid prm [11] in two different ways. First, we simply used
hybrid prm as the sampling strategy in img. Second, we partitioned each img

iteration into two parts: a “learning window” and a “sampling window,” with
the learning window at 20% of the total set size. During the learning window,
we use hybrid prm to learn the appropriate probabilities of using each sampler,
starting with a uniform distribution. We then fix this distribution during the
sampling window. We experimented with several different ways of learning
during the learning window and all variants displayed comparable behavior.
In the results shown here, we use a fixed uniform probability distribution
during the learning window, but learn the probability distribution for the
sampling window just as with hybrid prm sampling. Because the learning
window is relatively small, this allows the learner to observe all the samplers.
For all experiments shown here, we use the cost-based version of hybrid prm

described in [11] and five component samplers: BasicPRM, two versions of
the Bridge test, and two versions of Gauss. The reward mechanism of the
original hybrid prm only rewards a planner when it generates cc-create and cc-

merge samples. However, a sample that expands a roadmap is also important.
Therefore, when a planner generates a cc-expand sample we reward it equal to
the complement of the percentage of successful connections from that sample.

Incremental Map Generation (IMG) 13

In Figure 6, we show hybrid prm in the img framework. For clarity, we
only show BasicPRM, and the version of Bridge test and Gauss that performed
best. Figure 6(a) shows where img would stop roadmap construction with pure
hybrid prm sampling for various k and τ . This shows similar trends when
varying k and τ as seen previously. Figure 6(b) shows the relative number of
samples created by each sampler. Figure 6(c) shows the probability of being
selected and the percentage of cc-oversample nodes for each sampler. Our
results confirm the findings in [11]: BasicPRM is selected early on because
it is relatively inexpensive but dies out quickly as other, more powerful and
expensive samplers are selected. In the end, after the witness query is solved,
hybrid prm vacillates between a version of Gauss and a version of Bridge test.

Figure 6(d) and 6(e) show similar plots as 6(b) and 6(c), respectively, for
img with a hybrid learning window. Unlike the previous plots (b and c), this
version does not select a dominant sampler towards the end of roadmap con-
struction, after the witness query is solved. We believe in fact that this is a
more accurate evaluation because at this stage all samplers are equally “bad,”
i.e., none are able to generate useful samples and should not necessarily be dis-
tinguished. In particular, note that more than 80% of the nodes created by all
samplers are cc-oversample nodes in the later stages of roadmap construction.

4.2 Application-Specific Stopping Criteria

As discussed in Section 3.2, the img framework can accept a broad range of
stopping criteria that can be customized for particular applications or user
preferences. We can apply our framework to study computational biology
problems such as protein folding and protein structure transitions.

Here, we compare our general roadmap progress evaluation to an applica-
tion specific one that measures when the secondary structure formation order
(i.e., the high-level order in which the protein folds) has stabilized in the
roadmap (see [24] for details). We specifically study the folding of proteins G,
L, and mutants of protein G, NuG1 and NuG2 [19] because they are known
to fold differently despite having similar structure.

Figure 7 shows how each metric varies during roadmap construction for
protein G and NuG1: roadmap progress evaluation indicated by black circles
at various k and τ and stable secondary structure formation order indicated
by red circles. (Similar plots for all proteins studied can be found in [26].)
The plots also show the percentage of folding pathways in the roadmap that
follow the same order as seen experimentally. The application specific stopping
criteria is noisy in the early phases of roadmap construction and then stabilizes
after 4000 nodes. For this application, PCMAX and PCSUM are similar
since there is typically one large connected component with the remaining
nodes as singletons. Even so, roadmap progress evaluation is able to identify
different stopping points for different τ and k values. In fact, for both proteins
shown here, τ = 0.0062 and k = 5 corresponds to when the percentage of
folding pathways matching experimental data stabilizes.

14 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

di
st

an
ce

samples

Hook environment: Hybrid. tau: t1=0.05, t2=0.0125, t3=0.0062, k: k1=5, k2=10

graph: max diameter graph: sum diameter

k1:t1,2400

k1:t2,4000
k1:t3,4600

k2:t1,4250
k2:t2,3,4850

(a)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

no
de

s
[lo

g
sc

al
e]

samples (500 per set) [log scale]

Hook environment: Hybrid Sampling

N(PRM) N(Bridge) N(Gauss)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 100 1000 10000

pr
ob

ab
ili

ty

Hook environment: Hybrid Sampling

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000 10000

ov
er

sa
m

pl
ed

 %

samples (500 per set) [log scale]

PRM Bridge Gauss

(c)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

no
de

s
[lo

g
sc

al
e]

samples (500 per set) [log scale]

Hook environment: IMG with Hybrid Learning Window

N(PRM) N(Bridge) N(Gauss)

(d)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 10 100 1000 10000

pr
ob

ab
ili

ty

Hook environment: IMG with Hybrid Learning Window

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000 10000

ov
er

sa
m

pl
ed

 %

samples (500 per set) [log scale]

PRM Bridge Gauss

(e)

Fig. 6. Applying Hybrid prm with img. Hybrid prm using img: (a) stopping criteria,
(b) number of samples per sampler, and (c) sampler probability and oversample %.
Hybrid prm Learning Window: (d) number of samples per sampler and (e) sampler
probability and oversample %. The witness query solved after 1440 samples.

5 Conclusion

Here, we proposed a framework to automatically determine how many sam-
ples a planner needs for a given motion planning problem. This framework
can accept a broad range of evaluation criteria which can be customized for
particular applications. We provide easy to define parameters that allow users
to stop roadmap construction by satisfying criteria based on the quality of
the roadmap. This has many potential applications that we plan to study.

Incremental Map Generation (IMG) 15

0.0e+00

1.0e+05

2.0e+05

3.0e+05

4.0e+05

5.0e+05

6.0e+05

7.0e+05

8.0e+05

9.0e+05

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

di
st

an
ce

pe
rc

en
ta

ge

samples (500 per set)

Protein G. tau: t1=0.05, t2=0.0062, k: k1=5, k2=15

ssfo stable
% matching experimental data

max diameter
sum diameter

k1:t1,1300

k1:t2,3200 k2:t1,5500

k2:t2,5700

(a)

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

di
st

an
ce

pe
rc

en
ta

ge

samples (500 per set)

Protein NuG1. tau: t1=0.05, t2=0.0062, k: k1=4, k2=10, k3=15

ssfo stable
% matching experimental data

max diameter
sum diameter

k1:t1,1900

k1:t2,3600

k2:t1,5000

k2:t2,6500

k3:t1,2,8600

(b)

Fig. 7. Comparison of img roadmap progress evaluation to application specific
evaluation for (a) protein G (112 dof) and (b) a mutant of protein G (114 dof)
which are experimentally known to fold differently despite structural similarity.

There are also several other areas that we would like to investigate further.
For example, we would like to expand our list of node generation methods to
include other types of random sampling and grid-based techniques.

References

1. N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. OBPRM:
An obstacle-based PRM for 3D workspaces. In Robotics: The Algorithmic Per-
spective, pages 155–168, Natick, MA, 1998. A.K. Peters. Proc. Third Workshop
on Algorithmic Foundations of Robotics (WAFR), Houston, TX, 1998.

2. N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods.
IEEE Trans. Robot. Automat., 16(4):442–447, August 2000.

3. M. Apaydin, A. Singh, D. Brutlag, and J.-C. Latombe. Capturing molecular
energy landscapes with probabilistic conformational roadmaps. In Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), pages 932–939, 2001.

4. V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling
strategy for probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), volume 2, pages 1018–1023, May 1999.

5. B. Burns and O. Brock. Sampling-based motion planning using predictive mod-
els. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2005.

6. D. G. Corneil, F. F. Dragan, and E. Köhler. On the power of bfs to determine
a graph’s diameter. Networks, 42(4):209–222, 2003.

7. R. Geraerts and M. H. Overmars. Reachablility analysis of sampling based
planners. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 406–412,
2005.

8. S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree: A hierarchical struc-
ture for rapid interference detection. Comput. Graph., 30:171–180, 1996. Proc.
SIGGRAPH ’96.

9. D. Hsu, T. Jiang, J. Reif, and Z. Sun. Bridge test for sampling narrow passages
with proabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 4420–4426, 2003.

16 D. Xie, M. Morales, R. Pearce, S. Thomas, J.-M. Lien and N. M. Amato

10. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configura-
tion spaces. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2719–2726,
1997.

11. D. Hsu, G. Sánchez-Ante, and Z. Sun. Hybrid PRM sampling with a cost-
sensitive adaptive strategy. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 3885–3891, 2005.

12. L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Randomized query
processing in robot path planning. In Proc. ACM Symp. Theory of Computing
(STOC), pages 353–362, May 1995.

13. L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. Automat., 12(4):566–580, August 1996.

14. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

15. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), pages 473–479, 1999.

16. E. Mazer, J. M. Ahuactzin, and P. Bessiere. The Ariadne’s clew algorithm. In
Journal of Artificial Robotics Research (JAIR), volume 9, pages 295–316, 1998.

17. M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato. A machine
learning approach for feature-sensitive motion planning. In Proc. Int. Workshop
on Algorithmic Foundations of Robotics (WAFR), pages 361–376, Utrecht/Zeist,
The Netherlands, July 2004.

18. M. A. Morales A., R. Pearce, and N. M. Amato. Metrics for analyzing the
evolution of C-Space models. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 1268–1273, May 2006.

19. S. Nauli, B. Kuhlman, and D. Baker. Computer-based redesign of a protein
folding pathway. Nature Struct. Biol., 8(7):602–605, 2001.

20. C. Nissoux, T. Simeon, and J.-P. Laumond. Visibility based probabilistic
roadmaps. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), pages 1316–1321,
1999.

21. J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc.
IEEE Symp. Foundations of Computer Science (FOCS), pages 421–427, San
Juan, Puerto Rico, October 1979.

22. R. Seidel. On the all-pairs-shortest-path problem. In Proc. 24th Annu. ACM
Sympos. Theory Comput., pages 745–749, 1992.

23. G. Song and N. M. Amato. Using motion planning to study protein folding
pathways. In Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pages
287–296, 2001.

24. S. Thomas, X. Tang, L. Tapia, and N. M. Amato. Simulating protein motions
with rigidity analysis. In Proc. Int. Conf. Comput. Molecular Biology (RE-
COMB), pages 394–409, 2006.

25. S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), volume 2, pages 1024–1031, 1999.

26. D. Xie, M. A. Morales, R. Pearce, S. Thomas, J.-M. Lien, and N. M. Amato.
Incremental map generation (IMG). Technical Report TR06-005, Parasol Lab,
Dept. of Computer Science, Texas A&M University, Mar 2006.

