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Abstract— This paper describes a scalable method for paral-
lelizing sampling-based motion planning algorithms. It subdi-
vides configuration space (C-space) into (possibly overlapping)
regions and independently, in parallel, uses standard (sequen-
tial) sampling-based planners to construct roadmaps in each
region. Next, in parallel, regional roadmaps in adjacent regions
are connected to form a global roadmap. By subdividing the
space and restricting the locality of connection attempts, we
reduce the work and inter-processor communication associated
with nearest neighbor calculation, a critical bottleneck for
scalability in existing parallel motion planning methods.

We show that our method is general enough to handle
a variety of planning schemes, including the widely used
Probabilistic Roadmap (PRM) and Rapidly-exploring Random
Trees (RRT) algorithms. We compare our approach to two other
existing parallel algorithms and demonstrate that our approach
achieves better and more scalable performance. Our approach
achieves almost linear scalability on a 2400 core LINUX cluster
and on a 153,216 core Cray XE6 petascale machine.

I. INTRODUCTION

Motion planning is the problem of finding a valid path

(e.g., collision-free) for a robot (or other movable object)

from a specified start configuration to a goal configuration in

an environment [11]. Motion planning plays a significant role

in a number of application areas outside robotics including

computer animation [17], [3], virtual prototyping [10], [4],

and computational biology [25], [5], [26].

Sampling-based motion planning algorithms have been

highly successful at solving previously unsolved problems

[11], and much research has focused on developing more

sophisticated variants of them. Sampling-based motion plan-

ning algorithms are broadly classified as either tree-based

or graph-based. The tree-based approach has many variants

but the basic idea is to grow one or more trees starting

from a given (start) configuration in the robot’s configuration

space (C-space). The graph-based approach is well suited for

multi-query use and is generally performed in two phases:

a preprocessing phase, during which a graph representing

valid paths is constructed, and a query phase, during which
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the start and goal configurations are connected to the precom-

puted graph. A simple graph search is used to extract a path.

Sampling-based approaches are efficient and can be applied

to high dimensional problems. While not guaranteed to find

a solution, they are probabilistically complete, meaning that

the probability of finding a solution given one exists increases

with the number of samples generated [16].

Despite their advantages, the efficiency of sampling-based

motion planning algorithms degrades as the ratio of obstacle

space to free space increases – common in high dimensional

problems. Thus, substantial resources in time and hardware

are still required to solve computationally intensive appli-

cations. For example, the authors in [28] reported that it

took several hours on a desktop PC to compute a roadmap

modeling the folding motion of a small protein using coarse

approximations for energy calculations. This time increases

to several weeks if more accurate energy calculations are

used or if a larger protein were studied.

One solution to this resource problem may lie in parallel

computing. For many application areas, parallel processing

offers the advantage of not only reducing computation time,

but also improving the solution quality and enabling larger

problems to be solved than were feasible before.

In this work, we present a strategy for parallelizing

sampling-based motion planning algorithms. Our strategy

uses C-space subdivision to achieve scalability. First, the

planning space is separated into (possibly overlapping) re-

gions, at least one per processor. Then, each processor

independently applies a sampling-based planner in its region

and produces a regional roadmap. Finally, adjacent regional

roadmaps are connected to form a global roadmap. By

subdividing the space, we reduce the amount of work and

inter-processor communication required for nearest neighbor

calculations, which has been seen to be a critical bottleneck

for scalability in previous methods. Our approach was im-

plemented using the STAPL (Standard Template Adaptive

Parallel Library) framework for parallel C++ code, a research

project in the Parasol Lab at Texas A&M University [8], [27].

Contribution. Key contributions of this work include:

• The first reported work in parallel sampling-based mo-

tion planning based on C-space subdivision.

• Experiments that show we achieve better and more

scalable performance on thousands of processors than

two previous parallel sampling-based planners.

• An approach that is compatible with any sampling-

based algorithm, including the Probabilistic Roadmap

(PRM) and Rapidly-exploring Random Trees (RRT)

algorithms.



II. RELATED WORK

For years, researchers have proposed and studied different

types of parallel algorithms for motion planning. For a

detailed survey of early work in general parallel motion

planning, see [13]. Recently, research efforts have focused on

parallel sampling-based motion planning due to the success

of sequential sampling-based motion planning in solving

high dimensional problems [14]. We first review sequential

sampling-based motion planning approaches, followed by

their parallel counterparts, and conclude with related work

on C-space subdivision.

A. Sampling-based Motion Planning (SBMP)

One well established sampling-based motion planning ap-

proach is the Probabilistic Roadmap (PRM) [16]. PRMs first

construct a graph G = (V, E), called a roadmap, to capture

the connectivity of C-space. A node in the graph represents

a valid (e.g., collision-free) placement of the robot (movable

object), and an edge is added between two nodes if a simple

path can be defined and validated by a local planner. In the

initial method, nodes are generated using uniform random

sampling and connections are attempted between a node and

its k-nearest neighbors as computed using some distance

metric (e.g., Euclidean). Once the roadmap is constructed,

query processing is done by connecting the start and goal

configurations to the roadmap and extracting a path through

the roadmap between them. Many variants of PRMs have

been proposed that bias node generation or connection in

various ways [11].

Tree-based methods, such as the Rapidly-exploring Ran-

dom Tree (RRT) [19] and Hsu’s expansive planner [15], are

other popular approaches to sampling-based motion plan-

ning. RRTs attempt to grow a tree from the start configura-

tion expanding outward into the unexplored areas of C-space.

They first generate a uniform random sample and identify the

nearest node in the tree to that sample. They then attempt

to make a step from the nearest node toward the generated

sample and add the step to the tree if successful. When

solving a query, RRTs continue until the goal configuration

can be connected to the tree in a similar fashion. RRT-

connect [18] is a variant of the original RRT algorithm

that grows two trees, one from the start configuration and

one from the goal configuration, until the two trees can be

connected.

B. Parallel Sampling-based Motion Planning

The sequential PRM algorithm was first parallelized in

[2] and then specifically for protein folding applications in

[28]. Both papers present a similar parallel approach. Each

processor generates an “equal” number of nodes in the entire

C-space in parallel and adds them to the roadmap. Then, each

processor attempts to connect its nodes with their k-nearest

neighbors in the entire roadmap. The major drawback of this

approach was the all-to-all computation and communication

involved in the O(n2) method used to find nearest neighbors

which did not scale to large systems or problem sizes.

A basic parallelization of RRTs is given in [9] where

the problem is replicated on each processor. Each processor

then constructs its own RRT and concurrently explores the

entire C-space along with all the other processors. The first

processor to find a solution sends a termination message

to other processors. More recent research on parallelization

of RRTs is presented in [12], [6]. While the work in [12]

extends the initial idea of RRT parallelization, the work in

[6] explores GPU implementation of parallel RRT and RRT∗

algorithms with a primary focus on parallelizing the collision

detection phase.

Parallel Sampling-based Roadmap of Trees (pSRT) [1],

[22], [23] combines the multiple query sampling character-

istics of PRMs with the efficient local planning capabilities

of single query of RRTs. Unlike previous approaches, the

nodes of a pSRT roadmap are trees instead of individ-

ual configurations. The collections of these trees form the

roadmap. Connections between trees are attempted between

closest pairs of configurations between the two trees. The

authors adopted the scheduler (master) – processor (slave)

architecture. Each slave processor computes a predefined

number of trees in the entire C-space. The master is re-

sponsible for arbitration of tree ownership, nearest neighbor

computations, and determination of which pairs of trees to

attempt for connection. Edge validation is distributed to the

slave processes.

In most existing work surveyed, we identify inter-

processor communication, redundant computation, and load

imbalance (in master-slave architecture) as the key bottle-

necks to scalable performance. To address some of these

drawbacks, we propose a C-space subdivision approach.

C. C-space Subdivision

The concept of C-space subdivision has been proposed and

used in many existing sequential motion planning algorithms.

One of the earliest complete (or exact) motion planning

algorithms computes an exact representation of C-space by

uniformly dividing it along the robot’s degrees of freedom

into cells [7]. However, this approach is not practical for high

dimensional problems.

Feature sensitive motion planning [20], [21] proposes a

supervised method of recursively breaking up an environ-

ment into regions and classifying these regions as free,

clutter, narrow, or blocked by comparing region features to a

database of known region types. Roadmaps are constructed

in each region and recombined to form a final roadmap.

RESAMPL [24] subdivides the C-space into local regions

based on an initial sampling of the entire space. As a

partitioning strategy, RESAMPL first generates a small set

of samples, both valid and invalid, in the entire space. Some

of these samples, selected from the set randomly, become

representative samples for the local regions. Region sizes

are determined by the distance of the representative sample

to its k-nearest neighbors in the initial set.

Another space subdivision approach is the Approximate

Cell Decomposition (ACD) method [29]. ACD subdivides

the C-space into rectangular cells. Each generated cell is



labelled as empty if it lies completely in free space, full
if it lies completely in obstacle space, or mixed otherwise.

PRM is combined with ACD to compute localized roadmaps

by generating samples within these cells. The connectivity

graph for adjacent cells in ACD is augmented with pseudo-

free edges that are computed based on localized roadmaps.

The work in [20], [21] is the most closely related work

to our own. The authors in [20], [21] present a C-space

subdivision that uses a random splitting point from ran-

domly selected positional degree of freedom (DOF) so as

to define an orthogonal boundary to the selected DOF. This

splitting process is repeated recursively until homogeneous

but overlapping sets of regions are obtained. Homogeneity

is defined according to a set of features measured for each

region. Unlike the work in [20], [21], we do not focus

on region identification. Rather, in this initial work, the

regions were constructed in a regular manner that facilitated

parallelization.

III. STRATEGY FOR PARALLELIZING SAMPLING-BASED

MOTION PLANNING

A. Overview of Approach

An overview of our approach is given in Algorithm 1.

Initially, the environment describing the obstacles and robot

is subdivided into regions. A simple illustration of a 2D

environment subdivided into four regions is shown in Fig-

ure 1(a). The subdivision is represented by a region graph,

whose vertices represent regions and whose edges encode the

adjacency information between regions. Figure 1(b) shows

the region graph corresponding to the subdivision shown in

Figure 1(a). The circles and straight lines connecting adjacent

circles represent vertices and edges of the region graph,

respectively.

Algorithm 1 Parallel Sampling-based Motion Planning

Input: An environment E, A set of motion planners S,

number of regions NR

Output: A roadmap graph G
1: Decompose E into N regions

2: Make a region graph R = (VR, ER) with VR and

ER representing each region and adjacency information

between regions, respectively

3: Independently and in parallel, construct roadmaps in

each region using any desired planner s ǫ S
4: Connect regional roadmaps in adjacent regions to form

a roadmap G for the entire problem

In Step 2, roadmaps are constructed independently, in

parallel, in each region. Hence, this approach does not

depend on the underlying sampling-based motion planning

algorithm or strategy and can handle a variety of planning

schemes.

In Step 3, we connect nearby regional roadmaps to form a

roadmap representing the entire C-space. The region graph is

the enabling infrastructure facilitating the process of connect-

ing the region roadmaps. The region graph infrastructure aids

(a) A 2D environment subdivided into 4 regions

with user-defined overlap between regions

(b) Region Graph

Fig. 1. Space subdivision

identification of adjacent regions between which connections

are attempted. In this way, communication is only limited to

adjacent regions.

In the following, we describe each step in more detail.

B. Space Subdivision and Region Graph Construction

We subdivide a given environment by breaking up the

planning space into a set of regions. While the approach is

general, in this work, we consider the x, y, and z dimensions

of the original workspace only. Each processor is then

assigned at least one region and the task of building a re-

gional roadmap in its assigned region(s). In this initial work,

we maintain some user-defined overlap between regions to

allow sampling in the portions of the space that are at the

boundaries that may facilitate connection between regional

roadmaps.

We made use of two different graphs as underlying data

structures: the roadmap graph and the region graph.

The roadmap graph stores the nodes and edges represent-

ing the configurations sampled and the connections between

the samples, respectively.

The region graph, shown in Figure 1(b), whose construc-

tion is described in Algorithm 2, represents the regions and

the adjacencies between regions with its vertices and edges,

respectively. This information is used to limit communication

to adjacent regions. In addition, the region graph also main-

tains additional information that keeps track of the connected

components in each region which is used when connecting

adjacent regions.

C. Constructing Regional Roadmaps

Step 2 of Algorithm 1 involves construction of regional

roadmaps. At this step, any of the existing sampling-based

motion planning algorithms, such as PRM (and its variants)

or RRT (and its variants) can be used. This step is indepen-

dent of the sampling strategy employed. At this step, each

processor independently generates and connects samples in



Algorithm 2 Region Graph Construction

Input: An environment E and the number of regions NR.

Output: A region graph R.

Let R = ∅.

Let Rd = SubDivideSpace(E, NR).

Add a vertex for each region r of Rd to R.

for all neighboring regions (r1, r2) ǫ Rd) par do

Add the edge (r1, r2) to R.

end for

Return R.

its assigned region with no or minimal communication with

other regions. The roadmaps built at this step are added to the

roadmap graph. To facilitate and streamline the connection

at the next step, we keep track of the size and a vertex

representative for each connected component in the regional

roadmap.

Algorithm 3 Region Roadmap Connection

Input: A region graph R, connection method, k number

of candidates, local planner lp
Output: A roadmap graph G.

for all edges E ǫ R par do

if (connection method == closest) then

sourceCC = select k center of mass based closest CC

to target region from E.source
targetCC = select k center of mass based closest CC

to source region from E.target
end if

if (connection method == largest) then

sourceCC = select k largest CCs from E.source
targetCC = select k largest CCs from E.target

end if

for all pairs(sourceCC, targetCC) do

if lp.IsConnectable(sourceCC, targetCC) then

Add the edge(sourceCC, targetCC) to G.

end if

end for

end for

Return G.

D. Connecting Regional Roadmaps

The final step in constructing the full roadmap is to

connect the regional roadmaps. Prior to this step, we track the

sizes and number of connected components in each region.

The regional graph stores this information which is input

to the region connection algorithm shown in Algorithm 3.

Other inputs to the algorithm include: k, the number of

connections to be attempted between adjacent regions, the

type of connection method, and a local planner used to verify

connections.

For every edge identifying neighboring regions in the

region graph, we attempt a connection between candidate

node(s) of connected components in the source region to

candidate node(s) of connected components in the target

region. Even though our implementation is independent of

which region connection method is used, in this work,

we attempt to connect regions based on the size of con-

nected components in each region and the distance between

connected components across regions. For the size-based

connection, we attempt connections between a user-defined

k largest connected components from the source region and

k largest connected components from the target region. For

the distance-based connection, we attempt to connect the

k-closest connected components between the regions based

on the distance between them. This distance is computed

between the centers of mass (a measure of average of

all configurations in the connected component) of the two

connected components.

IV. ANALYSIS OF THE ALGORITHM

The original PRM algorithm as reported in [16] requires

O(N2) time and O(N) space to construct a roadmap with

N configurations. This serves as the basis for our analysis

and is used for the complexity of constructing a regional

roadmap.

The overall time complexity of our approach as described

in Algorithm 1 can be given as:

T = Td(Env, nr) + Tr(i)|VR| + Tc(i, j)|ER|

where T is the sum of the cost of space decomposition Td

for a given environment Env subdivided into nr regions,

the cost Tr(i) of roadmap construction in region ri, for

all vi ǫ VR, and the cost Tc(i, j) of connecting regional

roadmaps in regions ri and rj , for all (ri, rj) ǫ ER. This

formulation makes the simplifying assumption that the cost

of constructing regional roadmaps is the same for all regions

and similarly for the cost of connecting regional roadmaps.

If this is not the case, then the costs of these should be

determined separately and summed.

Step 1 involves space decomposition. We assume p pro-

cessors/tasks and that the regions are divided equally among

the p processors. In this case, the regular workspace-based

decomposition of C-space used in this paper, and its corre-

sponding region graph, can be constructed in time O(|VR|+
|ER|)/p where VR and ER are the vertices and edges of the

region graph, respectively.

Step 2 of Algorithm 1 involves the construction of the

regional roadmaps. Since we are assuming there are p re-

gional roadmaps, each of the same size, this implies they will

have N/p nodes each, and hence the cost of (sequentially)

constructing the PRM roadmap for each region will be

O((N/p)2). If regional roadmaps are RRTs instead, one

would use the cost of constructing an RRT of size N/p
here instead, and similarly for any other desired approach

for constructing a regional roadmap.

Most inter-processor communication occurs when con-

necting regional roadmaps. The region graph infrastructure

helps to limit both computation and communication to ad-

jacent regions. If we assume a naive connection attempt

between every configuration in a region to every configu-

ration in neighboring region, this worst case scenario will



result in O((N/p)2) edge computations plus the cost of

communication between neighboring processors.

Thus, in summary, the time, work and space complexity of

this approach can be given as O((N/p)2), O((N2)/p) and

O(N) respectively.
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Fig. 2. STAPL software architecture.

V. IMPLEMENTATION USING STAPL

Our code was written in C++ using the Standard Template

Library (STL) and the Standard Template Adaptive Parallel

Library (STAPL) as supporting libraries. STAPL [8] is a

platform independent superset of STL being developed in our

lab. It provides a collection of building blocks for writing par-

allel programs. These building blocks (as shown in Figure 2)

include a collection of parallel algorithms (pAlgorithms),

parallel and distributed containers (pContainers), a general

mechanism to access the data of the pContainer, similar to

STL iterators called pV iew, an abstraction of task graph

of computation called PARAGRAPH and an Adaptive

Runtime System that includes a communication library,

scheduler and perfomance monitor. For detailed information

on the STAPL project, please see [8], [27].

In this work, we made use of the STAPL pGraph, one

of the STAPL pContainers, as the parallel data structure

for representing both the region graph and the roadmap

graph. Our proposed method was implemented as a STAPL

pAlgorithm.

VI. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

1) Algorithms: We implemented four different algorithms.

The first two were based on our proposed approach but with

two different strategies as the underlying sequential planner.

These two implementations are referred to as pSBMP-RRT, a

parallel sampling-based motion planning method with RRT

as the underlying sequential planner, and pSBMP-PRM, a

parallel sampling-based motion planning method with PRM

as the underlying sequential planner. For evaluation and com-

parison, we implemented two additional parallel algorithms:

the parallel PRM (pPRM) [2] and parallel sampling-based

roadmap of trees (pSRT)[1], [22]. Please note that pPRM

(a) Clutter

(b) Building

Fig. 3. Environments studied

and pSRT were implemented based on our understanding of

how they were described in the literature and it is possible

that different implementations may perform better.

2) Environments and Robots: We used two different

kinds of environments. The first is a homogeneous cluttered

environment with dimensions of 512x512x512 units. The

cluttered elements span the x-axis. The cluttered environment

has a total of 216 obstacles, each of size 2x64x64 units,

as shown in Figure 3(a). The second environment shown

in Figure 3(b) is a non-homogeneous cluttered environment.

This particular environment models the floor plan of the

H.R. Bright building (HRBB), the building that houses the

Departments of Computer Science and Engineering and

Aerospace Engineering at Texas A&M University.

In both environments, we use two different kinds of robots:

a 4x4x4 unit cube-like rigid body robot and a three-link

articulated linkage robot, with each link having dimensions

of 7x1x1 units.

3) Machine Architectures: Our experiment was carried

out on two massively parallel computers. The first is a

Cray XE6 petascale machine at Lawrence Berkely National

Laboratory. It has 6384 nodes and a total of 153,216 cores

with 217 TB of memory and peak performance of 1.288

peta-flops. The second machine is a major computing cluster

at Texas A&M University. It has a total of 300 nodes, 172

of which are made of two quad core Intel Xeon and AMD

Opteron processors running at 2.5GHz with 16 to 32GB per

node. The 300 nodes have 2400 cores in all with over 8TB

of memory and a peak performance of 24 Tflops. Our code

was written in C++ using the STAPL library [8], [27] and

compiled with gcc 4.4.4 on the LINUX cluster and gcc 4.6.1

on the Cray XE6 machine.
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Fig. 4. Comparison of our proposed method (pSBMP-PRM and pSBMP-RRT) to two existing approaches: pPRM and pSRT

B. Experimental Results

1) Comparison with Previous Approaches: We tested the

four algorithms (pSBMP-PRM, pSBMP-RRT, pPRM and

pSRT) on the LINUX cluster varying the processor count

from 1 to 16. The input sample size was fixed at 9600

for each of the four algorithms. Each experiment was run

five times and the average maximum time for the 5 runs

was computed. Figures 4(a) and (b) show the running time

and speedup for the four algorithms. From Figure 4, one

will observe that our proposed method (pSBMP-PRM and

pSBMP-RRT) achieves good scalability compared to the ex-

isting methods. For this particular experiment, we stopped at

a processor count of 16 because the two existing algorithms

(the pPRM in particular) could no longer scale beyond 16

processor counts.

2) Effects of Different Environments and Machine Archi-

tectures: We subjected our method to further experiments

in order to observe how it would perform in different

environments and machine architectures. Even though these

problems exhibit different levels of difficulty and homogene-

ity leading to differences in running time, we observe that

their relative performances are still similar.

Figure 5 shows both the timing and scalability results for

three different motion planning problems. The first problem

is the cluttered environment with an articulated linkage robot

(ClutterLinks), the second is the building environment with

an articulated linkage robot (HRBBLinks), and the third is

the building environment with a rigid body robot (HRB-

BRigid). We observe that the more difficult the problem,

the better the scaling. The basic reason for this is that

processors (cores) are fully engaged with computation which

in some cases (if the algorithm and experiments are properly

designed) lowered the overhead cost of idle or inter-processor

communication.

We also observe that scalability improves with an increase

in sample size. For the same reason as with problem diffi-

culty, increasing sample size ensures that the processors are

fully engaged with computation. Figure 6 shows results for

varying sample size for the articulated linkage robot in a

cluttered environment problem. This set of experiments was

carried out on the LINUX cluster with processor counts from

32 to 256.

To study scalability and test the limit of our method,

we explore further experiments on a Cray XE6 petascale

machine. In this experiment, we tested processor counts of

240, 480, 720, 960 and 1200. The results are shown in

Figure 7. We observe that scalability is still possible on a

massively parallel machine such as the Cray XE6. The results

also suggest that, to the extent possible, our proposed method

is independent of machine architecture. Thus, though there

may be variance in results, we still expect to see similar

performance and scalability across different platforms.

3) Effects of Region Connection on Performance and

Roadmap Connectivity: Regional roadmap connection is the

last step in our method. At this step, we attempt to connect

individual roadmaps to form a full roadmap representing the

connectivity of the free space. The connection is limited

to adjacent regions. In this initial work, the choice of

how to connect was based on the sizes of the connected

components (CCs) in each region and the distances between

the CCs across neighboring regions. Our implementation

also provides a flexible way to connect by allowing the user

to specify how many CCs to attempt to connect. We show

both the number of CCs and the size of the largest CC
before and after region connection as evaluation metrics in

Table I.

Our study shows that connection methods and k impact

both performance and connectivity of the resulting roadmap.

While the region connection running time increases with k,

the increase in running time does not significantly degrade

performance or affect overall scalability of the method.

Table I shows that the time spent at the region connection

phase is a fraction of the total time and that much of

the time is spent during the roadmap construction phase.

Connectivity improvement is measured in terms of decrease

in the number of CCs after region roadmap connection as

well as increase in the size of connected CCs. A successful
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Fig. 5. Results from three different motion planning problems on LINUX cluster using pSMBP-PRM and pSMBP-RRT methods
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Fig. 6. Results from varying input size for the articulated linkage robot in a cluttered environment using pSMBP-PRM method
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Fig. 7. Higher processor counts on Cray XE6 petascale machine

region connection leads to bigger CCs and possibly a more

connected roadmap, especially if the size-based method is

used.

VII. CONCLUSION

In this paper, we describe a scalable approach for par-

allelizing sampling-based motion planning algorithms. Our

framework uses the subdivision of C-space to achieve scal-

ability. We compare a prototype implementation of our

method to two existing parallel algorithms for sampling-

based motion planning and demonstrate that our approach

achieves better and more scalable performance. We presented

experimental results using up to 1200 cores on a Cray XE6

petascale machine and up to 256 cores on a LINUX cluster.



TABLE I

REGION CONNECTION PERFORMANCE

△ number △ size of Region Connect Total

k of CC largest CC Time (s) Time (s)

Largest CC Method

1 31 24414 0.107 37.385
2 61 24513 0.336 37.512
4 122 24570 0.938 37.711

Closest CC Method

1 21 5982 1.518 38.132
2 54 5672 2.857 39.663
4 124 10425 9.499 47.084

We demonstrated that our framework is flexible enough to

support different planning schemes.

Future work will extend our current approach such that

we can more efficiently handle more complex environments

and attempt higher dimensional problems. Our future work

will also include a more detailed analysis of the quality of

the roadmap resulting from our method.

Acknowledgement

The authors would like to thank Dezshaun Meeks for his

contributions as an undergraduate research intern in our lab

during the summer of 2011.

REFERENCES

[1] M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E.
Kavraki. Probabilistic roadmaps of trees for parallel computation of
multiple query roadmaps. In The International Symposium on Robotics

Research (ISRR), Sienna, Italy, October 2003.
[2] N. M. Amato and L. K. Dale. Probabilistic roadmap methods are

embarrassingly parallel. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), pages 688–694, 1999.
[3] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better flocking behaviors

using rule-based roadmaps. In Proc. Int. Workshop on Algorithmic

Foundations of Robotics (WAFR), pages 95–111, Dec 2002.
[4] O. B. Bayazit, G. Song, and N. M. Amato. Enhancing randomized

motion planners: Exploring with haptic hints. In Proc. IEEE Int. Conf.

Robot. Autom. (ICRA), pages 529–536, 2000.
[5] O. B. Bayazit, G. Song, and N. M. Amato. Ligand binding with

OBPRM and haptic user input: Enhancing automatic motion planning
with virtual touch. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 954–959, 2001. This work was also presented as a poster at
RECOMB 2001.

[6] J. Bialkowski, S. Karaman, and E. Frazzoli. Massively parallelizing
the rrt and the rrt*. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
2011.

[7] R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in
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