
A Scalable Distributed RRT for Motion Planning

Sam Ade Jacobs, Nicholas Stradford, Cesar Rodriguez, Shawna Thomas and Nancy M. Amato

Abstract— Rapidly-exploring Random Tree (RRT), like other
sampling-based motion planning methods, has been very suc-
cessful in solving motion planning problems. Even so, sampling-
based planners cannot solve all problems of interest efficiently,
so attention is increasingly turning to parallelizing them.
However, one challenge in parallelizing RRT is the global
computation and communication overhead of nearest neighbor
search, a key operation in RRTs. This is a critical issue as it
limits the scalability of previous algorithms. We present two
parallel algorithms to address this problem. The first algorithm
extends existing work by introducing a parameter that adjusts
how much local computation is done before a global update. The
second algorithm radially subdivides the configuration space
into regions, constructs a portion of the tree in each region
in parallel, and connects the subtrees, removing cycles if they
exist. By subdividing the space, we increase computation locality
enabling a scalable result. We show that our approaches are
scalable. We present results demonstrating almost linear scaling
to hundreds of processors on a Linux cluster and a Cray XE6
machine.

I. INTRODUCTION

Research in robotic motion planning spans over three

decades, resulting in the development of different types

of sequential and parallel algorithms for motion planning

[10], [12]. The recent renewed interest in parallel motion

planning algorithms is due to the progress made in sequential

algorithms, the ubiquity of parallel and distributed machines,

and the demand for more efficiency in solving complex, high

dimensional problems such as those arising in manipulation

and reconfigurable robotics [1], computational biology and

drug design [3], [24], as well as virtual prototyping and

computer-aided design [2], [9]. These new application areas

test the limit and capability of existing sequential motion

planners [21]. Thus, scalable parallelism has a key role

to play, both in supporting existing work and in exploring

new algorithms needed to solve complex, high dimensional

motion planning problems.

This research supported in part by NSF awards CNS-0551685, CCF-
0833199, CCF-0830753, IIS-0917266, IIS-0916053, EFRI-1240483, RI-
1217991, by NSF/DNDO award 2008-DN-077-ARI018-02, by NIH NCI
R25 CA090301-11, by DOE awards DE-FC52-08NA28616, DE-AC02-
06CH11357, B575363, B575366, by THECB NHARP award 000512-0097-
2009, by Samsung, Chevron, IBM, Intel, Oracle/Sun and by Award KUS-
C1-016-04, made by King Abdullah University of Science and Technology
(KAUST). This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

The authors are with the Parasol Lab., Dept. of Computer Science and
Engineering, Texas A&M Univ., College Station, Texas, 77843-3112, USA.
{sjacobs,nds0057,cesar094,sthomas,amato}@cse.tamu.edu

There are two main sampling-based motion planning

approaches: RRT [16] and Probabilistic Roadmap Method

(PRM) [14]. RRT, PRM, and their variants are widely

considered as state-of-the-art methods for solving motion

planning problems. They are efficient and have been highly

successful at solving many previously unsolved problems.

RRT in particular is well suited for non-holonomic and

kinodynamic motion planning problems [7], [17].

In this work, we present scalable parallel algorithms for

computing Rapidly-exploring Random Trees (RRTs). In par-

ticular, we present two parallel algorithms: (i) an algorithm

that extends [11] by introducing a parameter that controls

how much local and concurrent computation is done before

a global update and inter-processor communication, and (ii)

a novel algorithm that radially subdivides Cspace into regions

and then concurrently builds subtrees in each region which

are later connected to form a single tree. By controlling how

the subtrees explore the space, we minimize the communi-

cation overhead — a major bottleneck in parallel processing.

While these parallel approaches employ the standard RRT

expansion techniques, we note that they both result in trees

that are structurally different than would be constructed

sequentially.

Key contributions of this work include:

• We extend previous work by introducing a new param-

eter to control the RRT’s local expansion and minimize

global communication, yielding a more scalable algo-

rithm.

• A novel radial subdivision of Cspace so that RRT

computation can be distributed efficiently.

• A generic and efficient implementation of nearest neigh-

bor search based on a nested map reduce parallel com-

putation pattern.

We present results demonstating almost linear scalability to

hundreds of processors on a Linux cluster and a Cray XE6

machine.

II. PRELIMINARIES AND RELATED WORK

Sampling-based Motion Planning. The motion planning

problem is to find a valid path (e.g., collision-free and

satisfying any joint limit and/or loop closure constraints) for a

movable object starting from a specified initial configuration

to a goal configuration in an environment [10]. A single

configuration is specified in terms of the movable object’s

d independent parameters, or degrees of freedom (DOF). The

set of all possible configurations (both feasible and infeasible)

is configuration space (Cspace). Cspace is partitioned into

two sets: Cfree (feasible) and Cobstacle (infeasible). Motion

planning then becomes finding a continuous sequence of

points in Cfree that connects the start and the goal.

A complete solution of the motion planning problem is

considered computationally intractable and has been shown

to be PSPACE-hard with an upper bound that is doubly

exponential in movable object’s DOF [22]. As an alterna-

tive, approximate solutions have been shown to be efficient

and practical. Sampling-based methods [10] are the state-

of-art practical approach to solving motion planning prob-

lems. While not guaranteed to find a solution if one exists,

sampling-based methods are known to be probabilistically

complete, i.e., the probability of finding a solution given

one exists increases with the number of samples generated.

Sampling-based methods are broadly classified into two

main classes: roadmap or graph-based methods such as the

Probabilistic Roadmap Method (PRM) [14] and tree-based

methods such as Rapidly-exploring Random Tree (RRT) [16].

RRT. The basic sequential RRT (shown in Algorithm 1)

grows a tree rooted at the start configuration that expands

outward into unexplored areas of Cspace. RRT first generates

a uniform random sample qrand, valid or not, and identifies

the closest node qnear in the tree to qrand. qnear is extended

toward qrand a stepsize ∆q. If the extension is successful,

qnew is added to the tree as node and the pair of qnear

and qnew is added as an edge. To solve a particular query,

RRT repeats this process until the goal configuration is also

connected to the tree. RRT-connect [15] is a variant that

grows two trees towards each other: one rooted at the start

configuration and the other at the goal configuration. These

two trees explore Cspace until they are both connected.

Algorithm 1 Sequential RRT

Input: An environment env, a root qroot, the number of

nodes N , a stepsize ∆q
Output: A tree T containing N nodes rooted at qroot

1: T .AddNode(qroot)

2: i← 0
3: while i < N do

4: qrand ← GetRandomNode(env)

5: qnear ← FindNeighbor(T, qrand, 1)

6: qnew ← Extend(qnear, qrand, ∆q)

7: if !TooSimilar(qnear, qnew) ∧ IsValid(qnew) then

8: T .AddNode(qnew)

9: T .AddEdge(qnear, qnew)

10: i← i + 1
11: end if

12: end while

13: return T

Parallel RRT. Early parallel motion planning methods

were based on the discretization of Cspace [8], [18]. The

discretization as presented limits the algorithm to solving

relatively low dimensional problems. However, these methods

laid the foundation for subsequent work in parallelizing

RRTs.

The OR paradigm [8] was applied to parallelizing RRT

computations on shared-memory machines where the com-

putation is replicated on each process [7]. Processes concur-

rently explore Cspace and the first process to find a solu-

tion sends a termination message to other processes. Their

work also explored concurrently and cooperatively building

a single tree under a shared-memory model. Each process

executes their own program and communicates to other

processes by exchanging data through the shared memory

in a concurrent read exclusive write (CREW) fashion. In

addition, they study a hybrid algorithm combining the OR

paradigm and the CREW model. The processes are divided

into groups and each group cooperatively build its own tree.

The first group to find a solution sends a termination message

to the others.

Bialkowski et al. parallelize RRT and RRT∗ by focus-

ing on parallelizing the collision detection phase [4]. They

identified nearest neighbor search as the key bottleneck for

scalability. Their implementation was done in CUDA on a

GPU. Other work has turned to multicore architectures [11].

They present three algorithms for distributed RRT. The first

is a message passing implementation of the OR paradigm.

In the second algorithm, each process builds part of tree and

globally communicates with the other processes each time a

new node and edge is added. The third algorithm adopts a

manager-worker approach. Instead of having multiple copies

of the tree, only the manager initializes and maintains the

tree while the expansion computation is delegated to the

worker processes. The drawback with the manager-worker

approach is that it does not scale well as it is prone to load

imbalance with more workload on master process(es). In this

paper, we extend the second algorithm by introducing a user-

defined parameter to minimize the communication overhead

associated with global update.

C-space Subdivision. Cspace subdivision has been very

useful in solving sequential motion planning problems. Early

work in Cspace subdivision computes the exact representation

of Cspace by uniformly dividing it into cells [5]. Each cell is

then classified as empty, full, or mixed depending on the

obstacle position in the cell. An A∗ search algorithm is then

used to compute a path through the purely empty or mixed
cells.

Some sampling-based motion planning approaches also

employ Cspace subdivision. In [19], [20], Cspace is subdi-

vided by randomly selecting splitting points from randomly

selected positional DOF. These splitting points define an or-

thogonal boundary in the selected DOF. This splitting process

is recursively repeated until homogeneous but overlapping

sets of regions are obtained. Homogeneity is defined accord-

ing to a set of features measured for each region. A similar

algorithm of interest is Region-Sensitive Adaptive Motion

Planning (RESAMPL) [23]. RESAMPL subdivides Cspace

into local regions using an initial set of samples. Some of

these initial samples are randomly selected as representative

samples for the local regions. The distance of the representa-

tive sample to its k-closest neighbors determines the region’s

size. Approximate Cell Decomposition (ACD) subdivides

Cspace into rectangular cells [26]. Similar to [5], each cell is

labeled as empty, full, or mixed. PRM is combined with

ACD to compute localized roadmaps by generating samples

within these cells. The connectivity graph for adjacent cells in

ACD is augmented with pseudo-free edges that are computed

based on localized roadmaps.

In our previous work [13], we present Cspace subdivision-

based parallel methods for graph-based randomized motion

planning algorithms, particularly PRMs. We demonstrate

that by subdividing the space and restricting the locality of

connection attempts, scalable performance can be achieved.

However, the regular subdivision method as presented is

not well suited for RRT. Here, we design a novel radial

subdivision technique for parallelizing RRT.

III. PARALLELIZING RRT

In this section, we present two different parallel algorithms

for RRT computation. The first is a bulk synchronous version

of the distributed RRT algorithm given in [11]. We extend

the algorithm by introducing a user-defined parameter that

controls how much local expansion is made before a global

broadcast. The second algorithm subdivides Cspace radially

into regions and distributes RRT computation in each region

to available processes. Regional subtrees in adjacent regions

are later connected to form one single tree. In both cases,

although the algorithms use the familiar RRT expansion

operations, the trees that are constructed are structurally dif-

ferent from trees that would be constructed using a sequential

method. We describe each approach in detail below.

A. Bulk Synchronous Distributed RRT

The distributed RRT algorithm in [11] incurs global broad-

casts each time a new node and edge are added to the tree.

However, this is not scalable. We extend this work in two

key ways. First, in order to optimize the use of space and

memory, each process does not maintain a copy of the tree.

Instead, they all have shared access to the tree which is stored

in a global, distributed data structure. Second, we regulate

inter-processor communication by introducing a variable m
that controls how much expansion will be done before a

global update and broadcast. Setting m = 1 gives the same

computational pattern as in [11].

Algorithm 2 describes bulk synchronous distributed RRT.

We first initialize the tree T with the root node qroot.

Subsequently, each process locally (in parallel) samples m
nodes and finds its nearest node qnear in the tree. If the

expansion qnear toward qrand is successful, then the pair

(qnew, qnear) is added to a temporary container Nm. After m
steps, the global tree is updated. This process continues until

the termination condition is met. Figure 1 shows a simple

illustration of bulk synchronous distributed RRT computation

in which p=2, m=2 and N=8.

Algorithm 2 Bulk Synchronous Distributed RRT

Input: An environment env, a root qroot, the number of

nodes N , a stepsize ∆q, the number of processes p, the

number of local expansion steps m
Output: A tree T containing N nodes rooted at qroot

1: T .AddNode(qroot)

2: for all proc p ∈ P par do

3: i← 0
4: while i < N/p do

5: localContainer Nm

6: for j = 1 . . .m do

7: qrand ← GetRandomNode(env)

8: qnear ← FindNeighbor(T, qrand, 1)

9: qnew ← Extend(qnear, qrand, ∆q)

10: if !TooSimilar(qnear, qnew) ∧ IsValid(qnew) then

11: Nm.Insert(qnear, qnew)

12: end if

13: end for

14: for all node pair n ∈ Nm do

15: T .AddNode(n.qnew)

16: T .AddEdge(n.qnear, n.qnew)

17: i← i + 1
18: end for

19: end while

20: end for

21: return T

(a) (b) (c)

T
T

Process 0

Process 1

T= root

Fig. 1. Bulk Synchronous Distributed RRT. (a) T is initialized to root.
(b) The first iteration with m=2. (c) The second iteration where globally
communicated data is shown in black.

B. Radial Subdivision Distributed RRT

We also present a novel radial Cspace subdivision for

parallelization especially suited for RRTs. Starting from the

root qroot, we subdivide Cspace into conical regions and build

part of the tree (subtrees) in each region. These subtrees are

later connected in a manner such that no cycle exists after

region connection. We exploit locality by only attempting to

connect branches that reside in neighboring regions. Figure 2

shows an example for a two dimensional Cspace. Each

process builds a branch (shown in different colors) starting

at the root that is biased toward their region of Cspace.

qk

qj

Tk

Tj

qroot

Ti

qi

Fig. 2. Example of radial subdivision for a 2D Cspace. Each process
concurrently builds a subtree (using sequential RRT) rooted at qr and biased
toward a target qi (e.g., qn for the black process).

Algorithm 3 describes the Cspace subdivision-based RRT

computation in detail. Region construction first creates a

hypersphere Sd in d-dimensional Cspace centered at qroot ∈
Rd with radius r. We generate Nr random points at distance

r from qroot. Each point qi defines a conical region centered

around the ray −−−−→qrootqi. We construct a region graph G(V, E)
where each vertex vi represents a region defined by qi and

an edge (vi, vj) is added if qj is one of the k − closest
neighbors of qi. Thus, the edges in the region graph encode

the neighborhood information between regions.

After region graph construction, we independently (in

parallel) run sequential RRT in each region. The RRT con-

struction is done in a way that the tree is biased toward the

region target qi. Each region is centered around the random

ray −−−−→qroot, qi. Some overlap between regions is allowed so

subtrees can explore part of the space in adjacent regions,

enabling easier connection between subtrees in the next

phase.

Using the adjacency information provided by the region

graph, we make connection attempts between each region

branch and its adjacent neighbors. We check if any edge

connection at this point creates a cycle. If a cycle exists,

we prune the tree so as to remove any cycles. In the results

presented here, tree pruning is performed by running a

graph search algorithm. Figure 3 shows a simple pictorial

illustration for tree pruning.

Algorithm 3 Radial Subdivision Distributed RRT

Input: An environment env, a root qroot, the number of

nodes N , a stepsize ∆q, the number of processes p, the

number of regions Nr, a region radius r, the number of

adjacent regions k
Output: A tree T containing N nodes rooted at qroot

1: QNr
← generate Nr random points of r distance from

qroot

2: Initialize region graph G(V, E) with V ← QNr
and E ←

∅
3: for all qi ∈ QNr

par do

4: neighbors← FindNeighbors(G, qi, k)

5: for all n ∈ neighbors do

6: G.AddEdge(qi, n)

7: end for

8: end for

9: for all vi ∈ V par do

10: T ← ConstructBiasedRRT(env, qroot, N/p, ∆q, qi)

11: end for

12: for all (vi, vj) ∈ E par do

13: ConnectTree(T, vi, vj)

14: if Cycle(T) then

15: Prune(T)

16: end if

17: end for

18: return T

qroot

qi

Deleted New

qj

Ti
Tj

EdgeEdge

Fig. 3. Tree pruning example. The new edge (purple) between the red and
blue branches causes a cycle in the red branch. The dashed edge is identified
for removal.

IV. IMPLEMENTATION DETAILS

A. STAPL Framework

Our code was written in C++ using the Standard Template

Library (STL) and the Standard Template Adaptive Parallel

Library (STAPL) [6], [25] as supporting libraries. STAPL

is a platform independent superset of STL that provides a

collection of building blocks for writing parallel programs.

These building blocks include a collection of parallel algo-

rithms (pAlgorithms), parallel and distributed containers

(pContainers), a general mechanism to access the data of

a pContainer similar to STL iterators called pViews,

an abstraction of the computation task graph (PARAGRAPH),

and an Adaptive Runtime System (ARMI) that includes a

communication library, scheduler, and performance monitor.

In this work, we made use of the STAPL Parallel Graph

Library, one of the STAPL pContainers, as the parallel

data structure for representing both the region graph and

the RRT tree. We implemented bulk synchronous distributed

RRT and radial subdivision distributed RRT as STAPL

pAlgorithms. The tree pruning process described in Sec-

tion III-B was implemented using the STAPL parallel breadth

first search (BFS) algorithm.

B. Parallelizing Nearest Neighbor Search

There is a clear need for fine-grained parallelism in

sampling-based motion planning [4], [11]. The nearest neigh-

bor search is considered a key bottleneck to scalable perfor-

mance. In this work, we implement and incorporate a nested

and fine-grained parallel computation of nearest neighbor

search within the two parallel RRT algorithms described in

Section III. Our implementation has a map reduce parallel

computation pattern.

Algorithm 4 describes the approach in the context of a

distributed RRT. To compute the nearest point qnear to a

query point qrand, each processing element sends qrand to

the other processing elements by calling MapReduce(). The

mapping function (Algorithm 5) receives the query point

qrand and locally computes its nearest neighbor in its local

portion of the tree (Tp) based on a given distance metric. The

reduce function (Algorithm 6) takes the two inputs returned

by the mapping function and computes the nearest neighbor

to qrand from the two inputs based on the same distance

metric.

V. EXPERIMENTAL SETUP AND RESULTS

We investigate the scalability of the two algorithms pre-

sented in Section III: bulk synchronous distributed RRT and

radial subdivision distributed RRT. We also examine the

effect of robot complexity and machine architecture.

A. Experimental Setup

1) Machine Architecture: Experiments were conducted on

two massively parallel computers. The first machine is a

major Linux computing cluster. It has a total of 300 nodes,

172 of which are made of two quad core Intel Xeon and AMD

Opteron processors running at 2.5GHz with 16 to 32GB

memory per node. The 300 nodes have 8TB of memory and

a peak performance of 24 Tflops. Each node of the Linux

cluster is made of 8 processor cores, thus, for this machine

we present results for processor counts in multiples of 8.

The second machine is a Cray XE6 petascale machine. It has

Algorithm 4 Parallel NNS Distributed RRT

Input: An environment env, a root qroot, the number of

nodes N , a stepsize ∆q,the number of processes p
Output: A tree T containing N nodes rooted at qroot

1: T .AddNode(qroot)

2: for all proc p ∈ P par do

3: i← 0
4: while i < N/p do

5: subtree Tp ∈ T
6: qrand ← GetRandomNode(env)

7: qnear ← MapReduce(Map(Tp, qrand),
Reduce(qnear, qnear))

8: qnew ← Extend(qnear, qrand, ∆q)

9: if !TooSimilar(qnear, qnew) ∧ IsValid(qnew) then

10: T.AddNodeToTree(qnew)

11: T.AddEdgeToTree(qnear, qnew)

12: end if

13: i← i + 1
14: end while

15: end for

16: return T

Algorithm 5 Map

Input: A set of points S, a query q
Output: A map of closest point to q and its distance M

1: M ← FindNeighbors(S, q, 1)

2: return M

6384 nodes, 217 TB of memory, and a peak performance of

1.288 peta-flops. Each node consists 12 processor cores. This

architectural layout influenced our choice of processor counts

to be in multiple of 12. Our code was written in C++ and

compiled with gcc-4.5.2 on the Linux cluster and gcc-4.6.3

on the Cray XE6 machine. Using STAPL, the same C++ code

was used on both architecture types.

2) Motion Planning Problems: We studied three differ-

ent kinds of environments: a 512 × 512 × 512 uniformly

cluttered environment (shown in Figure 4(a)) and a 7x7x7

grid environments (shown in Figure 4(b)) and another clutter

Algorithm 6 Reduce

Input: Two maps M1 and M2 of points and their distances

to a query q
Output: The closest point p ∈M1 ∪M2

1: if M1.distance ≤M2.distance then

2: p←M1.point
3: else

4: p←M2.point
5: end if

6: return p

(a) Clutter

(b) Grid

(b) Stripline

Fig. 4. Environments studied

environment with strip-like obstacles (shown in Figure 4(c)).

There are 216 obstacles each of size 2 × 4 × 4 uniformly

scattered in the clutter environment. The grid environment

has eight obstacles placed in a grid form. We studied two

different kinds of robot types: a 4× 4× 4 units 6 DOF cube-

like rigid body robot and an eleven-link (16 DOF) articulated

linkage robot, with each link having dimensions of 7× 1× 1
units.

B. Experimental Results

1) Bulk Synchronous Effect: We first study the effect of the

m parameter introduced in Algorithm 2 to tune the amount

of local expansion done before a global update. We fixed the

sample size at 16,384 and used m = {1, 16, 64}. Note that

m = 1 is the same as the distributed algorithm presented in

[11]. Figure 5 shows the running time as a function of the

number of processors on the Linux cluster for the rigid body

robot up to 256 processors.

Localizing the computation and thus minimizing frequent

inter-processor communication by varying m does impact

performance of distributed RRT, but this effect is not obvious

until higher processor counts, see Figure 5(b). In fact, m = 1
seems to outperform the others until around p = 16.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 1 16 64 128 256

T
im

e(
s)

of Processors

m=1
m=16
m=64

(a) x-axis starting from p = 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 16 64 128 256

T
im

e(
s)

of Processors

m=1
m=16
m=64

(b) x-axis starting from p = 16

Fig. 5. Effect of varying m in the bulk synchronous distributed RRT.

2) Radial Subdivision Scalability Study: As seen with the

bulk synchronous distributed RRT, localizing computation

reduces communication overhead which in turn improves

the overall scalability of the algorithm. We now look at

the scalability of radial subdivision distributed RRT on the

two different robots: the 6 DOF rigid body and the 16 DOF

articulated linkage. Figure 6 shows performance result on the

Linux cluster up to 64 processors. Radial subdivision RRT

was able to achieve almost near linear speedups for both

robot types.

3) Effect of Machine Architecture: We next study how the

machine architecture impacts performance for both the bulk

synchronous distributed RRT and the radial subdivision dis-

tributed RRT. For the bulk synchronous distributed RRT we

use m = {1, 25, 50} while keeping the sample size constant.

Figure 7 shows performance results for the rigid body robot

on the Cray XE6 machine. Radial subdivision distributed

RRT scales almost linearly, similar to what was observed on

 0

 500

 1000

 1500

 2000

 2500

 1 2 4 8 16 64

T
im

e(
s)

of Processors

6DOF Robot
16DOF Robot

(a) Time

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 64

S
ca

la
bi

lit
y

of Processors

6DOF Robot
16DOF Robot

(b) Scalability

Fig. 6. Radial subdivision distributed RRT performance on Linux cluster.

Linux cluster. Scalability of the bulk synchronous distributed

RRT depends on the value of m and the number of proces-

sors. As in the previous experiments (Figure 5), the impact

of increasing m is much felt at higher processor counts at

which inter-processor communication become significant.

4) Grid Environment: To further understand the perfor-

mance of radial subdivision in a different scenario, we

evaluated the radial subdivision algorithm in a grid environ-

ment with rigid body robot on Cray XE6 machine. In this

evaluation, we kept the number of regions constant at 480

across all processor count and varied the sample size per

region. The results from the evaluation are shown in Figure 8.

Given different input sizes, we saw decrease in execution time

as the number of processors increases.

5) Stripline Environment: We conduct another experiment

using the stripline environment. In this environment, we

varied the ammount of Cfree volume by varying the obstacles

sizes. We fixed the samples sizes at 4096 per region for 256

regions and varied the processor count from 8 to 256. This

experiment was conducted on Linux cluster and the results

are shown in Figure 9. We observed almost linear scalability

in all cases.

 50

 100

 150

 200

 250

 300

 350

 24 48 96 120

T
im

e(
s)

of Processors

Radial RRT
Bulk RRT (m=1)

Bulk RRT (m=25)
Bulk RRT (m=50)

(a) Time

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 24 48 96 120

S
ca

la
bi

lit
y

of Processors

Radial RRT
Bulk RRT (m=1)

Bulk RRT (m=25)
Bulk RRT (m=50)

(b) Scalability

Fig. 7. Distributed RRT performance on Cray XE6 machine.

VI. CONCLUSION

In this paper, we present two parallel algorithms for RRT

computation. The first algorithm extends existing work by

introducing a parameter m that controls how much local

computation is done before a global update across processors.

The second algorithm radially subdivides Cspace into regions

and lets each processor build part of the tree in each region.

By controlling local computation and subdividing Cspace,

we minimize the overhead associated with inter-processor

communication in parallel processing. We present results for

both a rigid body robot and an articulated linkages on two

different parallel machine architectures.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 24 48 96 120

T
im

e(
s)

of Processors

N=100 samples/region
N=200 samples/region

Fig. 8. Radial RRT performance results for grid environment on Cray XE6
machine

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 8 16 32 64 128 256

S
ca

la
bi

lit
y

of Processors

30% Free
60% Free

100% Free

Fig. 9. Radial RRT performance results for stripline environment on Linux
cluster

REFERENCES

[1] F. Aghili and K. Parsa. Configuration control and recalibration of a
new reconfiburable robot. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), pages 4077–4083, 2007.
[2] O. B. Bayazit, G. Song, and N. M. Amato. Enhancing randomized

motion planners: Exploring with haptic hints. In Proc. IEEE Int. Conf.

Robot. Autom. (ICRA), pages 529–536, 2000.
[3] O. B. Bayazit, G. Song, and N. M. Amato. Ligand binding with

OBPRM and haptic user input: Enhancing automatic motion planning
with virtual touch. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 954–959, 2001. This work was also presented as a poster at
RECOMB 2001.

[4] J. Bialkowski, S. Karaman, and E. Frazzoli. Massively parallelizing
the rrt and the rrt*. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS),
2011.

[5] R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in
configuration space for findpath with rotation. In Proc. Int. Conf. Artif.

Intel., pages 799–806, 1983.
[6] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith,

G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M. Amato, and
L. Rauchwerger. STAPL: Standard template adaptive parallel library.

In Proc. Annual Haifa Experimental Systems Conference (SYSTOR),
pages 1–10, New York, NY, USA, 2010. ACM.

[7] S. Carpin and E. Pagello. On parallel rrts for multi-robot systems. In
Proc. Italian Assoc. AI, pages 834–841, 2002.

[8] D. J. Challou, M. Gini, and V. Kumar. Parallel search algorithms for
robot motion planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
volume 2, pages 46–51, 1993.

[9] H. Chang and T. Y. Li. Assembly maintainability study with motion
planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1012–
1019, 1995.

[10] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, Cambridge, MA, June
2005.

[11] D. Devaurs, T. Simeon, and J. Cortes. Parallellizing rrt on distributed-
memory architectures. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
2011.

[12] D. Henrich. Fast motion planning by parallel processing - a review.
Journal of Intelligent and Robotic Systems, 20(1):45–69, 1997.

[13] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M.
Amato. A scalable method for parallelizing sampling-based motion
planning algorithms. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
2012.

[14] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. Robot. Automat., 12(4):566–580, August 1996.

[15] J. J. Kuffner and S. M. LaValle. RRT-Connect: An Efficient Approach
to Single-Query Path Planning. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), pages 995–1001, 2000.

[16] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 473–479, 1999.

[17] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
Int. J. Robot. Res., 20(5):378–400, May 2001.

[18] T. Lozano-Pérez and P. O’Donnell. Parallel robot motion planning. In
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1000–1007, 1991.

[19] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato.
A machine learning approach for feature-sensitive motion planning.
In Algorithmic Foundations of Robotics VI, pages 361–376. Springer,
Berlin/Heidelberg, 2005. book contains the proceedings of the Interna-
tional Workshop on the Algorithmic Foundations of Robotics (WAFR),
Utrecht/Zeist, The Netherlands, 2004.

[20] M. A. Morales A., L. Tapia, R. Pearce, S. Rodriguez, and N. M.
Amato. C-space subdivision and integration in feature-sensitive motion
planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 3114–
3119, April 2005.

[21] E. Plaku and L. E. Kavraki. Distributed sampling-based roadmap of
trees for large-scale motion planning. IEEE Transactions on Robotics

and Automation, 38:793–884, 2005.

[22] J. H. Reif. Complexity of the mover’s problem and generalizations. In
Proc. IEEE Symp. Foundations of Computer Science (FOCS), pages
421–427, San Juan, Puerto Rico, October 1979.

[23] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato. (RESAMPL):
A region-sensitive adaptive motion planner. In Algorithmic Foundation

of Robotics VII, pages 285–300. Springer, Berlin/Heidelberg, 2008.
book contains the proceedings of the International Workshop on the
Algorithmic Foundations of Robotics (WAFR), New York City, 2006.

[24] A. P. Singh, J.-C. Latombe, and D. L. Brutlag. A motion planning
approach to flexible ligand binding. In Int. Conf. on Intelligent Systems

for Molecular Biology (ISMB), pages 252–261, 1999.

[25] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Papadopoulos,
O. Pearce, T. Smith, N. Thomas, X. Xu, N. Mourad, J. Vu, M. Bianco,
N. M. Amato, and L. Rauchwerger. The STAPL Parallel Container
Framework. In Proc. ACM SIGPLAN Symp. Prin. Prac. Par. Prog.

(PPoPP), pages 235–246, San Antonio, Texas, USA, 2011.

[26] L. Zhang, Y. Kim, and D. Manocha. A hybrid approach for complete
motion planning. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 7–14, 2007.

