Blind RRT: A Probabilistically Complete, Distributed RRT

Cesar Rodriguez, Jory Denny, Sam A. Jacobs, Shawna Thomas, and Nancy M. Amato

{cesar094, jdenny, sjacobs, sthomas, amato}@cse.tamu.edu

Technical Report TR13-004
Parasol Lab.
Department of Computer Science and Engineering
Texas A&M University

April 3, 2013
Abstract

Rapidly-Exploring Random Trees (RRTs) have been successful at finding feasible solutions for high-dimensional problems. With motion planning becoming more computationally demanding, we turn to parallel motion planning for efficient solutions. Existing work on distributed RRTs has been limited by the overhead that global communication requires. A recent approach, Radial RRT, demonstrated a scalable algorithm that subdivides the space into regions to increase the locality of the computations. However, if an obstacle completely blocks RRT growth in a region, the planning space is not covered and thus planning problems cannot always be solved. We present a new algorithm, Blind RRT, which ignores obstacles during initial growth to efficiently explore the entire space. Because obstacles are ignored, free components of the tree become disconnected and fragmented. Thus, Blind RRT merges parts of the tree that have become disconnected from the root. We show how this algorithm can be applied to the Radial RRT framework allowing both scalability and usefulness in motion planning. We show this method to be a probabilistically complete approach to parallel RRTs. We show that our method not only scales, but also overcomes the motion planning limitations that Radial RRT has in a series of difficult motion planning tasks. The results show Blind RRT as a scalable strategy capable of effectively covering the space.

1 Introduction

Motion planning has been an active research area in the field of robotics. It also has many other applications including computer graphics [3], virtual reality [21], computational biology [4], and computer-aided design [8]. Problems in motion planning range from simple 2-D scenarios to high complexity robots with many degrees of freedom (DOF). Given that exact solutions are intractable for $DOF \geq 5$ [20], sampling-based motion planning has emerged as a promising technique for solving high-dimensional problems [15, 17].

Within sampling-based motion planning, we find two main approaches which most strategies follow: graph-based approaches, e.g., Probabilistic Roadmaps (PRM) [15], and tree-based approaches, e.g., Rapidly-Exploring Random Trees (RRT) [17]. PRMs perform two stages: the learning phase, which constructs a mapping (roadmap) of the planning space (configuration space (C_{space}) [19]) encoding valid paths; and the query phase, where extracts a valid path from the roadmap using a simple graph search. RRTs iteratively grow one or more trees from a given configuration towards random configurations. In each iteration, a robot configuration q_{rand} is chosen as an expansion direction, and the nearest node in the tree q_{near} to q_{rand} is selected and expanded towards q_{rand}. Contraction stops when the tree reaches the goal.

Even though sampling-based strategies are quite efficient, the computational costs, in terms of time and resources, of obtaining a solution are still expensive, especially in environments where the ratio of obstacle space, C_{obst}, to the free space, C_{free}, is high. Parallel motion planning embraces the notion that these kinds of problems can be solved with one or more processes collaboratively yielding a more efficient solution. One such method, Radial RRT [14], radially decomposes C_{space} into conical regions with the origin at the initial configuration and grows an RRT independently in each region. After this, branches are joined to adjacent regions through connected component connection techniques. Finally, cycles are removed so the resulting graph is a tree. This method scales well, but lacks the benefits of being probabilistically complete, which makes it impractical for many motion planning applications. Intuitively, an obstacle could entirely block an RRT’s ability to grow in a region disallowing coverage of C_{free}.

In this work, we present an RRT variant, Blind RRT, which ignores obstacles during the initial tree construction and retain all invalid and valid vertices and all valid edges. In this way, Blind RRT expands regardless of encountering obstacles or not. After initial construction, a post processing step is performed where invalid nodes are removed and unconnected pieces of the tree are merged back to the root. We apply this method in parallel to create a probabilistically complete parallel algorithm, both scalable and effective in covering the space.

Contributions of this work include:

- A novel method, Blind RRT, capable of exploring C_{free} regardless of the C_{obst} to C_{free} ratio.

- Application of Blind RRT with radially subdivided RRT to provide both scalability and usefulness in motion planning.
2 Preliminaries and Related Work

In this section, we present preliminary definitions and related motion planning techniques that are relevant to this paper. We discuss strategies that use obstacle witnesses to increase the quality of the roadmap and present previous work in parallel motion planning focusing on the parallelization of RRTs.

2.1 Preliminaries

Motion planning is the problem of finding a valid path (e.g., collision-free) taking a movable object (e.g., a robot) from a start configuration to a goal configuration in an environment [9]. A configuration of a robot is described by its \(n \) degrees of freedom (DOFs), each corresponding to an object component (e.g., a position and orientation). The space of all possible configurations, feasible or not, is called the configuration space \(\mathcal{C}_{space} \) [19]. \(\mathcal{C}_{space} \) is comprised into two sets: \(\mathcal{C}_{free} \), all feasible configurations, and \(\mathcal{C}_{obst} \), all infeasible configurations. Thus, motion planning becomes the problem of finding a continuous trajectory in \(\mathcal{C}_{free} \) from a start configuration to a goal configuration. Exact solutions become intractable for high-dimensional spaces as it is difficult to explicitly compute \(\mathcal{C}_{obst} \) boundaries [20]. However, the feasibility of configurations can be determined quite efficiently using collision detection (CD) tests in the workspace, the robot’s natural space.

2.2 Sampling-based Motion Planning

Because of the intractability of motion planning, sampling-based methods, which find approximate solutions, are both successful and effective in practice [15, 17]. Probabilistic Roadmaps (PRMs) [15] and Rapidly-Exploring Random Trees (RRTs) [17] are two common approaches to sample-based motion planning. Whereas PRMs construct a graph representing the connectivity of \(\mathcal{C}_{free} \), RRTs iteratively grow a tree rooted at a start configuration and towards unexplored areas of \(\mathcal{C}_{space} \), described in Algorithm 1. In each iteration, RRT generates a random configuration, \(q_{rand} \in \mathcal{C}_{space} \), and then it identifies the configuration \(q_{near} \) in the tree that is nearest to \(q_{rand} \). \(q_{near} \) is expanded towards \(q_{rand} \) at a distance of \(\Delta q \) to generate a new configuration \(q_{new} \). \(q_{new} \) is added to the tree as well as an edge between \(q_{near} \) and \(q_{new} \). RRT iterates until a stopping criteria is met, e.g., a query is solved. RRT-Connect [16] is a variant that greedily grows two trees, usually rooted at the start and the goal, towards each other until a connection between them is found.

<table>
<thead>
<tr>
<th>Algorithm 1 RRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Configuration (q_{root}) and expansion step (\Delta q)</td>
</tr>
<tr>
<td>Output: Tree (\tau)</td>
</tr>
<tr>
<td>1: (\tau \leftarrow q_{root})</td>
</tr>
<tr>
<td>2: while (\neg)done do</td>
</tr>
<tr>
<td>3: (q_{rand} \leftarrow \text{RandomCfg}())</td>
</tr>
<tr>
<td>4: (q_{near} \leftarrow \text{NearestNeighbor}(\tau, q_{rand}))</td>
</tr>
<tr>
<td>5: (q_{new} \leftarrow \text{Expand}(q_{near}, q_{rand}, \Delta q))</td>
</tr>
<tr>
<td>6: (\text{UpdateTree}(\tau, q_{near}, q_{new}))</td>
</tr>
<tr>
<td>7: end while</td>
</tr>
<tr>
<td>8: return (\tau)</td>
</tr>
</tbody>
</table>

Often, narrow passages are difficult for sampling-based motion planning. Many approaches that solve this problem find samples on or near the \(\mathcal{C}_{obst} \) boundary. Obstacle-based PRM (OBPRM) [2] samples configurations near the obstacles by pushing configurations from \(\mathcal{C}_{obst} \) to \(\mathcal{C}_{free} \). Uniform OBPRM performs the validation of random lines in \(\mathcal{C}_{space} \) to find obstacle boundaries. Gaussian PRM [5] and Bridge Test PRM [11] attempt inexpensive tests to find configurations near obstacles or contained in narrow passages. Toggle PRM entirely maps both \(\mathcal{C}_{obst} \) and \(\mathcal{C}_{free} \), retaining witnesses from failed connections in one space.
to augment the quality of the opposite space’s maps. These ideas inspire the algorithmic process presented here.

2.3 Parallel Motion Planning

As mentioned before, the computation required for motion planning problems has motivated work on parallel motion planning. Early parallel motion planning was aimed at the discretization of \(C_{space} \), but it was limited to low dimensional problems [7, 18]. PRM was first parallelized in [1]. A scalable Parallel PRM was presented in [13] where \(C_{space} \) is subdivided, each processor independently constructs a roadmap in a region, and the resulting roadmaps are connected in a global connection phase. One of the first parallel RRTs built multiple trees at the same time, concurrently exploring \(C_{space} \) and returning once a process finds a connection to the goal [6]. Three different distributed RRT algorithms are presented in [10]. The first is a message-passing implementation where a process sends an end-signal when the goal is found. The second allows processes to build the tree collaboratively by communicating when a new node and edge are found. The last parallelization uses the manager-worker pattern, where the workers perform collision detection on edges assigned by the manager. The bottle-neck of this approach is the unbalanced work that the manager(s) may need to perform while workers wait idly to receive their task.

Radial RRT [14] achieves scalability by introducing \(C_{space} \) subdivision to RRTs. Radial RRT divides \(C_{space} \) into conical regions with a common origin, the root, and builds an RRT in each of them. These trees are then connected to trees in neighboring regions and cycles are pruned. While Radial RRT has almost linear scalability, it may fail to successfully explore \(C_{space} \) and find valid paths, lacking probabilistic completeness (as shown in Section 4). This is due to the fact that an obstacle can completely prevent a region from expanding its tree, leaving a portion of the space, that may contain a valid path to the goal, unexplored.

3 Blind RRT

In this section, we describe the design, motivation and advantages of Blind RRT compared to the standard RRT. Although used in this work to improve Radial RRT, we present Blind RRT as a probabilistically complete strategy for motion planning, capable of solving problems independently of parallel computation. The motivation behind Blind RRT is the incapability of expansion for Radial RRT when an obstacle completely blocks progress in a region. Therefore, we propose to ignore obstacles, or blindly expand through them. Blind RRT takes advantage of the rapid expansion rate of RRTs, i.e., growing towards unexplored areas of all of \(C_{space} \).

3.1 Algorithm

The Blind RRT strategy, shown in Algorithm 2, starts by iteratively expanding a tree \(\tau \) rooted at a configuration \(q_{rand} \), similar to RRT. We alter the standard RRT \texttt{Expand} subroutine to continue growing through obstacles recording a set of configurations \(Q_{new} \) that occur during an expansion step. These witnesses are added to \(\tau \) in the \texttt{Update} function. If valid edges exist between successive nodes in \(Q_{new} \), these edges are added as well. Note that at this point, the Blind RRT has the same nodes as an RRT in an obstacle free environment and the RRT edges that are valid for the given environment. After performing \(N_{bl} \) Blind RRT iterations of expansion, Blind RRT deletes all invalid nodes in \(\tau \) and performs a connection phase for the various connected components (CCs) of the tree. Following this, all CCs other than the CC containing the root are deleted. \(\tau \) is returned.

Blind Tree Expansion. We describe two alternatives when performing blind expansion. Note that other RRT expansion algorithms could be modified and used appropriately. The first performs validity checking for the entire line from \(q_{near} \) to \(q_{new} \) (either at a distance \(\Delta q \) from \(q_{near} \) towards \(q_{rand} \) or \(q_{rand} \) itself, whichever is closer), collecting nodes that are valid along the boundary of \(C_{obst} \) (Figure 1(b)). The second stops at the first validity change, records the valid node, and directly jumps to \(q_{new} \) and validates it (Figure 1(c)). The latter skips part of the collision detection, while the former keeps track of more valid nodes along the expansion. The first expansion method retains all witnesses along an expansion step, which collects more configurations in narrow passages, while the second expansion method more rapidly jumps
Algorithm 2: Blind RR T

Input: A root configuration q_{root}, the initial number of nodes N_{br}, a maximum expanding distance Δ_q

Output: A tree τ containing N_{br} nodes rooted at q_{root}

1. $\tau \leftarrow \{q_{root}\}$
2. for $n = 1 \ldots N_{br}$ do
3. $q_{rand} \leftarrow \text{RandomNode}()$
4. $q_{near} \leftarrow \text{NearestNeighbor}(\tau, q_{rand})$
5. $Q_{new} \leftarrow \text{Expand}(q_{near}, q_{rand}, \Delta_q)$
6. $\tau.\text{Update}(q_{near}, Q_{new})$
7. end for
8. $\tau.\text{DeleteInvalidNodes}()$
9. $\text{ConnectCCs}(\tau)$
10. $\tau.\text{DeleteInvalidCCs}()$
11. return τ

Figure 1: RR T Expand expands greedily up to Δ_q, q_{rand}, or an obstacle is hit (a). Blind RR T Expand always expands up to Δ_q distance or q_{rand} while also retaining either all free witnesses (b) or only the first free witness (c) to return a set of expansion nodes Q_{new}.

It is important to note that nodes contained in C_{obst} may be added to the tree if they are found Δ_q away from q_{near}, but only edges between valid configurations are added to the tree.

Connected Component Connection. At the end of the first step, any obstacles found along the expansion may have caused parts of τ to become disconnected from the root, yielding multiple CCs in τ. However, we would like to only have one CC in τ to find a path from the root to any node within τ. For this, we attempt to connect pairs of CCs, CC_a and CC_b, using RR T-Connect where $\tau_a = CC_a$ and $\tau_b = CC_b$ (refer to [16] for a detailed description of RR T-Connect). In the connection step, we first choose CC_a as a random source CC, and then choose a target CC, CC_b, by one of the following criteria:

1. **Random CC.** This method is a naive and simplistic approach to avoid any nearest neighbor queries. Although we save time getting the pair of CCs, it can be ineffective in connecting CCs.

2. **The CC whose centroid is closest to the centroid of CC_a.** A nearest neighbor query is performed between the centroid of CC_a and the centroids of the other CCs. It significantly reduces the nearest neighbor computation, as the number of CCs is much smaller than the number of nodes in the tree.
This is used as an approximation scheme in selecting the closest CC.

- **The CC with the closest node to the centroid of CC\(_a\).** We chose the CC which minimizes the distance between its closest node to the centroid of CC\(_a\) and the centroid of CC\(_a\). This method is a slightly more costly approximation scheme in determining the closest CC to CC\(_a\).

- **The CC whose centroid is closest to a node in CC\(_a\).** Here, we calculate the centroid of all other CCs, find the nearest node in CC\(_a\) to each CC, and select the CC which minimizes this distance. It is similar to the previous approach in that it is again a cheap approximation compared with an overall closest node pair query.

- **The CC containing the closest node to a node in CC\(_a\).** We choose the CC which minimizes the distance between the closest node pair between CC\(_a\) and the candidate CC. This is computationally expensive but an accurate form of determining the closest CC to CC\(_a\). As such, it can increase the possibility of a successful connection.

Component connection iteratively selects CCs to connect to until either one CC is achieved or a maximum number of failures is reached. If after the CC connection phase the algorithm was unable to connect all CCs to the root, we proceed to delete any CCs that are disconnected from the root.

3.2 Probabilistic Completeness

Probabilistic completeness is a desirable property of randomized planners which refers to their ability to find a solution path, assuming one exists, as the number of samples tends to infinity. In this section, we describe and prove the probabilistic completeness of Blind RRT. In the following proof, we assume that the C\(_{\text{space}}\) is \(\epsilon\)-good [12] for some \(\epsilon > 0\).

Theorem 1. Blind RRT is probabilistically complete.

Proof. Given any two configurations \(q_s\) and \(q_g\) in the same connected component of C\(_{\text{free}}\), a path exists between \(q_s\) and \(q_g\). If no obstacles are present in the environment, i.e., C\(_{\text{free}}\) \(\equiv\) C\(_{\text{space}}\), then an RRT rooted at \(q_s\) will reach within \(\epsilon\) of \(q_g\) after \(n_0\) fixed step expansions of distance \(\Delta q\). (i.e., a path exists in the tree between \(q_s\) and \(q_g\).) \(n_0\) Blind RRT expansions are also sufficient to reach within \(\epsilon\) of \(q_g\). This is due to the fact that Blind RRT explores C\(_{\text{space}}\) identically to an RRT grown in the absence of obstacles because Blind RRT expansions ignore C\(_{\text{obst}}\).

After Blind RRT removes invalid nodes of the tree, \(q_g\) exists in some component of the tree CC\(_g\). If CC\(_s\) \(\equiv\) CC\(_g\), where CC\(_s\) is the component of the tree containing \(q_s\), then a path exists in the tree between \(q_s\) and \(q_g\). If CC\(_s\) \(\not\equiv\) CC\(_g\), then Blind RRT uses RRT-Connect to merge CC\(_g\) with CC\(_s\). It follows from the probabilistic completeness of RRT-Connect [16] that Blind RRT will connect CC\(_g\) to CC\(_s\) to yield a valid path between \(q_s\) and \(q_g\). \(\square\)

4 An Improved Radial RRT using Blind RRT

In this section, we introduce an improved Radial RRT framework for distributed RRTs which uses Blind RRT as a subroutine, shown in Algorithm 3.

4.1 Algorithm

Radial Blind RRT starts by radially subdividing C\(_{\text{space}}\) as in Radial RRT [14]. It makes use of a region graph, which is an abstraction of the different subdivisions of the space we are handling. To construct the region graph, the algorithm randomly samples \(N_r\) points \(Q_{N_r}\) on a \(d\) dimensional hypersphere of radius \(r\) centered at \(q_{\text{root}}\), where \(d\) is the dimension of C\(_{\text{space}}\), \(r\) is a bound on the growth of the region, and \(q_{\text{root}}\) is the root configuration of the RRT. These samples become the vertices of the region graph, each representing a region. Then, a \(k\)-closest connection routine determines the adjacency of the regions defining the edges of the region graph.
Radial Blind RRT, shown in Algorithm 3, constructs a Blind RRT in parallel in each region. Each region construct a tree of N_{br}/p nodes whose growth is bounded to the region, where N_{br} is input as the number of nodes for the tree and p is the number of processing elements. Most likely, the result will be that each region will contain several CCs that need to be connected back to the root component of the tree. This takes place in a global region connection phase.

```algorithmlisting
Algorithm 3 Radial Blind RRT

Input: A root configuration $q_{root}$, the number of nodes $N_{br}$, a maximum expansion distance $\Delta q$, the number of processors $p$, the number of regions $N_r$, a region radius $r$, the number of adjacent regions $k$

Output: A tree $\tau$ containing $N_{br}$ nodes rooted at $q_{root}$

1: $G(V, E) \leftarrow \text{ConstructRegionGraph}(N_r, r, k)$
2: for all $v_i \in V$ par do
3: $\tau \leftarrow \tau \cup \text{BlindRRT}(q_{root}, N_{br}/p, \Delta q, v_i)$
4: end for
5: $\tau_{mst} \leftarrow \text{MinimumSpanningTree}(G(V, E))$
6: for all $(v_i, v_j) \in \tau_{mst}$ par do
7: $\text{ConnectRegions}(v_i, v_j)$
8: end for
9: return $\tau$
```

The region connection phase is described in Algorithm 4 which attempts to connect CCs from neighboring regions. The neighboring regions found from the region graph allow for reducing the global communication between processing elements, thus improving scalability of the approach. Prior to the region connection phase, a minimum spanning tree of the region graph is computed so that no cycles are produced in the tree when connecting regions. Additionally, the minimum spanning tree provides information as to which neighbors are closest, and thus there is a higher probability of successful connection. To reduce the communication overhead in the region connection phase, we import all necessary information from the target region R_t, instead of updating the CC information every time a connection is performed. At the beginning, we know that none of the CCs in the source region R_s are connected to the CCs in R_t, so we initialize two sets: U the unconnected CCs and $C\{\}$ the already merged CCs. Initially, the first contains all R_s CCs and the second is the empty set. P is a queue containing all the CCs in the source region, R_s. The goal is to merge U with P without creating cycles. First, we dequeue a CC, CC_{local} from P, and iterate through the CCs in $C\{\}$, attempting connections and stopping if one is found. Then, we iterate through the CCs in U, attempting connections to all of them; if a connection is made, we update the sets C and U, by adding CC_{local} to C and removing it from U. We perform this operation until P is empty. Note that connections between CCs from the same region are never attempted, but multiple CCs may connect to the same remote CC progressively merging the CCs into one. This procedure not only performs region connection with reduced communication overhead, but also indirectly connects local CCs through the remote CCs. After this global CC connection step, we may or may not have connected all CCs of the overall tree back to the root component CC_{root}. Even with all the measures taken to connect all disconnected components back to the root, there is no guarantee that only one CC will exist globally. Therefore, we remove all remaining CCs.

Figure 2 shows an example of the different steps of the parallel algorithm on a simple 2-D environment with $p = 4$ processors. Figure 2(a) shows the example environment with regions decomposed. Regions are represented by points (blue) on the outer sphere. Figure 2(b) shows a Blind RRT expanded for $N_{br}/p = 20$ expansions. Notice how Blind RRT ignores and expands through C_{obst} covering all of C_{space}. Figure 2(c) shows the tree after local CC connection is performed. New edges are emphasized by magenta ellipses. Figure 2(d) shows the tree after global region connection. Again new edges are emphasized with magenta ellipses.

4.2 Probabilistic Completeness

In this section, we show two things: the probabilistic incompleteness of Radial RRT and the probabilistic completeness of Radial Blind RRT.
Algorithm 4 Connect Regions

Input: Two regions R_s and R_t

1: Pending CCs Queue $P ← R_s$.GetCCs()
2: Connected CCs $C ← \emptyset$
3: Unconnected CCs $U ← R_t$.GetCCs()
4: while $¬P$.IsEmpty() do
5: $CC_{local} ← P$.Dequeue()
6: for all $CC_{remote} ∈ C$ do
7: if $RRT − \text{Connect}(CC_{local}, CC_{remote})$ then
8: break
9: end if
10: end for
11: for all $CC_{remote} ∈ U$ do
12: if $RRT − \text{Connect}(CC_{local}, CC_{remote})$ then
13: $C = C ∪ CC_{remote}$
14: $U = U \setminus CC_{remote}$
15: end if
16: end for
17: end while

Figure 2: (a) An example environment with four regions, represented by their points (blue) on the outer circle. (b) Blind RRT concurrently expanding in the four regions ignoring obstacles as it goes. (c) Blind RRT concurrently and locally removes invalid nodes of the tree and connects CCs within each region (new edges emphasized in magenta). (d) Blind RRT connects CCs between regions yielding a final tree.

Observation 1. Radial RRT is probabilistically incomplete because an obstacle can entirely block exploration of a region in such a way that connections between adjacent regions will not be able to cover C_{space}. This is shown in Figure 3.

Theorem 2. Radial Blind RRT is probabilistically complete.

Proof. Without loss of generality assume C_{free} is a single connected component. Collectively the Blind RRTs built in each region will be able to expand and cover all of C_{space} in the initial expansion phase, for the reasons stated in the proof of Theorem 1. After the local connection phase, Radial Blind RRT recombines adjacent regions with RRT-Connect. By the probabilistic completeness of RRT-Connect [16], all regions will be merged and all components of the tree will be merged into one. Thus, Blind RRT is probabilistically complete. □

4.3 Experimental Setup

Experiments were conducted on a Linux computer center at Texas A&M University. The cluster has a total of 300 nodes, 172 of which are made of two quad core Intel Xeon and AMD Opteron processors running
at 2.5GHz with 16 to 32GB per node. The 300 nodes have 8TB of memory and a peak performance of 24 Tflops. Each node of the cluster is made of 8 processor cores, thus, for this machine we present results for processor counts in multiples of 8. RRT, Radial RRT, and Radial Blind RRT were implemented in a C++ motion planning library which uses the Standard Template Adaptive Parallel Library (STAPL), a C++ parallel library [?]. Our code was compiled with gcc-4.5.2.

All the methods use Euclidean distance as distance metric, straight-line local planner, brute force neighborhood finder and collision detection tests as validity tests. Four different environments were used: 2D Clutter (Figure 4a), 2D Grid (Figure 4b), and 2D Maze (Figure 4c).

We analyze the effect of varying the CC selection policy and the number of regions in Radial Blind RRT; we also compare against a sequential RRT and Radial RRT. We approximate the map coverage of each method by taking a uniformly sampled set of nodes in an environment and determining the percentage of nodes visible to the tree.

4.4 Map Coverage

In this section, we compare the methods ability to map space by analyzing the coverage of the generated trees. We approximate coverage with a sample size of 250 uniformly sampled nodes. Since Radial Blind RRT deletes nodes at two points of its execution, it is not effective to use a desired final number of nodes. Instead, we fixed the parameter N_{br} to be 500. Another parameter that plays an important role is the number of CC connection attempts in the local phase. Given that for each environment the number of CCs will vary, we decided to set the number of CC connection attempts to be 5 times the number of CCs after the initial expansion phase. This number was chosen according to initial testing results which demonstrated that a high number of CC connection attempts only increases the number of nodes but does not connect the tree significantly better, making the method rather slow. To have a fair comparison between methods, we ran Radial Blind RRT first and recorded the average number of nodes per test case, and we took the maximum number of nodes to be the N for both RRT and Radial RRT. This N was different for each environment. Radial Blind RRT and Radial RRT were tested with $N_r = [1, 2, 4, 8]$. Radial Blind RRT was also tested for each of the CC selection criteria except for Random. Coverage results are normalized to RRT.

As shown in Figures 5 and 6, Radial Blind RRT results in a better map coverage compared to Radial RRT except for one case in the 2D Maze. We omitted a plot of the coverage in 2D Clutter because all RRTs were able to reach 100% coverage. Differentiating between CC selection policies is difficult, we observed that Centroid to Centroid had the most reliable results and was the cheapest method to perform. Even though
there are cases where Radial Blind RRT outperforms RRT, the results are usually in between those of Radial RRT and RRT. We observe that Radial Blind RRT performs well in mapping the space, but recall the goal of this paper is to show a scalable RRT method for useful motion planning. In the future, we will further analyze the cases where the coverage is better than RRT to optimize them and implement its sequential version.

4.5 Scalability Experiment

We evaluated the Blind RRT algorithm on the LINUX cluster varying the processor count from 1 to 16. This experiment is to substantiate our claim for scalability. We carried out this experiment in the 2D Clutter, 2D Grid and 2D Maze environments. The initial input sample size was fixed at 1600 for each environment tested. Each experiment was run five times and the average maximum time for the 5 runs was computed. Figure 7 shows the running time in the three environments.

Except for the outlier spike at processor count 2 for the 2D Maze environment, we observe that the running time decreases with an increase in the number of processors. Initial investigation to understand the cause of the spike show that the resulting tree size at processor count 2 is more than doubled of the tree size at processor count 1 for the 2D Maze environment, which could explain the reason for the unexpected increase in time. However, we are investigating further the actual cause of the increase in both the tree size and time.
5 Conclusions

We show a scalable Radial Blind RRT that subdivides \(C_{\text{space}} \), builds an RRT in each section by ignoring obstacles, then connects disjoint \(CC \)s. After the local computation, it attempts connections across \(CC \)s in different regions. As a post-processing step, it removes any parts of the graph that could not be connected back to the root. In the experiments, we show that Radial Blind RRT scales almost linearly while effectively covering the space as opposed to Radial RRT. In future work, we will analyze the \(CC \) selection policy to optimize it and implement a sequential version of Blind RRT.

Acknowledgements

This research supported in part by NSF awards CNS-0551685, CCF-0833199, CCF-0830753, IIS-0917266, IIS-0916053, ERFI-1240483, R1-1217991, by NSF/DNDO award 2008-DN-077-ARI018-02, by NIH NCI R25 CA090301-11, by DOE awards DE-FC52-08NA28616, DE-AC02-06CH11357, B575363, B575366, by THECB NHARP award 000512-0097-2009, by Samsung, Chevron, IBM, Intel, Oracle/Sun and by Award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

