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Abstract—Robotic motion planning algorithms such as Prob-
abilistic Roadmap Methods (PRMs) have been successful in
simulating the protein folding process by building a roadmap,
or model, of the folding landscape. This roadmap is constructed
by sampling protein conformations and connecting them together
with energetically feasible transitions. In this work, we propose
an adaptive method to dynamically select an appropriate connec-
tion method from a set of connection method candidates. Our
framework, Adaptive Neighbor Connection (ANC), learns which
strategy to use by examining their success and cost over time.
Thus, it frees the user of the burden of selecting the best strategy
and allows this selection to change over time. We compare ANC
to 6 other distance-based connection methods on a set of 7 well-
studied proteins. We show that ANC builds roadmaps quickly
with high quality folding pathways.

I. INTRODUCTION

Modeling the protein folding process is crucial to better

understanding not only how proteins fold and function, but

also how they misfold triggering many devastating diseases.

Mad Cow disease and Alzheimer’s disease are both associated

with protein misfolding and aggregation [5]. Since it is difficult

to experimentally observe molecular motions, computational

methods for studying this motions become critical.

Traditional computational approaches for generating fold-

ing trajectories such as molecular dynamics [15], Monte

Carlo methods [7], and simulated annealing [14] provide

a single, detailed, high-quality folding pathway at a large

computational expense. As such, they cannot be practically

used to study global properties of the folding landscape or

to produce multiple folding pathways. Statistical mechanical

models have been applied to compute statistics related to

the folding landscape [19, 4]. While computationally more

efficient, these methods do not produce individual pathway

trajectories and are limited to studying global averages of the

folding landscape.

Robotics-based motion planning techniques, including the

Probabilistic Roadmap Method (PRM), have been success-

fully applied to protein folding [1, 2, 6]. They construct a

roadmap, or model, of the motion space by randomly sam-

pling conformations and connecting neighboring ones together

with feasible transitions. These robotics-based methods can

generate multiple folding pathways in a short amount of time

(e.g., a few hours on a desktop PC). This enables the study

of both individual folding trajectories and global landscape

properties. While promising, making good choices for each

of the algorithmic steps remains difficult. Hybrid PRM [10]

uses machine learning to dynamically decide how to generate

samples. However, the problem of selecting good candidates

for conformation connection is still daunting.

In this paper, we apply an adaptive connection framework

called Adaptive Neighbor Connection (ANC) to proteins.

ANC [8] is a strategy inspired by Hybrid PRM that takes

in a list of connection methods and automatically determines

the best one to use at a given time. Ideally, ANC should:

• pick a connection method that is most likely to success-

fully connect samples frequently and punish those that

continually do not,

• ensure that all methods have some chance of being

picked,

• adapt to changes in performance, and

• consider the time it takes to find and connect neighbors

in rewarding/penalizing them.

ANC rapidly learns the best strategy to employ based

on a trade-off between success and cost. It monitors each

connection method’s success and cost and updates a set of

selection probabilities accordingly. To apply ANC to proteins,

we change the measure of success from number of samples

connected to the weight (or quality) of edges created. Thus,

ANC will learn which connection methods produce high

quality edges efficiently.

We compare the performance of ANC to 6 different

distance-based connection methods on a set of 7 well-studied

proteins. We examine both time and resulting roadmap quality.

Our results confirm that no single connection method is the

best choice for all protein inputs. We also show that ANC

performs well over the entire set, even though it may not select

the best connection method for each individual input.

II. PRELIMINARIES AND RELATED WORK

We first describe the protein model used (Section II-A) and

then provide an overview of the PRM approach for protein

folding (Section II-B). We present various neighbor connection

methods in Section II-C and some popular protein distance

metrics in Section II-D.

A. Protein Model

A protein is a sequence of amino acids, or residues. We

model the protein as a linkage robot where only the φ and

ψ torsional angles are flexible. This is a standard modeling

assumption [17]. Each amino acid has two degrees of freedom,

φ and ψ. Thus, a protein with n amino acids has 2n degrees

of freedom.

There are many interactions such as hydrogen bonds and

van der Waals interactions [15] that affect the behavior of the

protein folding process and can be modeled by a potential



energy function. This potential energy function helps quantify

how energetically feasible a given protein conformation is.

In this work, we employ a coarse-grained potential function

from [1]. If the atoms are too close to each other (less than

2.4Å in sampling and 1.0Å in connecting), the energy returned

(or given) is high; otherwise, the energy is calculated by:

Utot =
∑

constraints

Kd{[(di − d0)
2 + d2c ]

1/2 − dc}+ Ehp

where Kd is 100 kJ/mol, di is the length on the ith constraint,

and d0 = dc = 2Å as in [15].

B. PRM for Protein Folding

The Probabilistic Roadmap Method (PRM) [13] is a robotics

motion planning algorithm that first randomly samples robot

(or protein) conformations, retains valid ones, and connects

neighboring samples together with feasible motions (or transi-

tions). To apply PRMs to proteins, the robot is replaced with a

protein model and traditional collision detection computations

are replaced with potential energy calculations [1, 2, 6].

1) Sampling: Protein conformations, or samples, are ran-

domly generated with bias around the native state, the func-

tional state of the protein and most energetically stable. To do

so, samples are iteratively perturbed, starting from the native

state, and retained if energetically feasible. A conformation q
is added to the roadmap with the following probability:

P (accept q) =















1 if E(q) < Emin

Emax − E(q)

Emax − Emin
if Emin < E(q) ≤ Emax

0 if E(q) > Emax

where Emin is the energy of the open chain and Emax is

2Emin. This is the same criteria used in [21].

2) Connection: Once a set of samples is created, they

must be connected together with feasible transitions to form

a roadmap, or model of the folding landscape. Connecting all

possible pairs of samples is computationally infeasible, and it

has been shown that only connecting the k-closest neighbors

results in a roadmap of comparable quality [18].

Given a pair of samples, we compute a transition between

them by a straight-line interpolation of all the φ and ψ tor-

sional angles. The transition is retained if all the intermediate

conformations along the transition are energetically feasible.

We assign an edge weight to reflect the energetic feasibility of

the transition as
∑n−1

i=0 −log(Pi) where Pi is the probability

to transit from intermediate conformation ci to ci+1 based on

their energy difference ∆Ei = E(ci+1)− E(ci):

Pi =

{

e
−∆Ei

kT if ∆Ei > 0

1 if ∆Ei ≤ 0

where k is the Boltzmann constant and T is the temperature.

This allows the most energetically feasible paths to be ex-

tracted by standard shortest path algorithms.

C. Candidate Neighbor Selection Methods

Recall that only neighboring (or nearby) samples are at-

tempted for connection because it is infeasible to attempt all

possible connections. Typically, conformations that are more

similar are more energetically feasible to connect and provide

good candidates for connection attempts.

There have been a number of methods proposed for locating

candidate neighbors for connection. The most common is

the k-closest method which returns the k closest neighbors

to a sample based on some distance metric. This can be

implemented in a brute force manner taking O(k log n)-time

per node, totaling O(nk logn)-time for connection. A similar

approach is the r-closest method which returns all neighbors

within a radius r of the node as determined by some distance

metric. Here, the size of the neighbor set is not fixed but is

dependent on the sampling density.

Two randomized variants of these methods are proposed

in [18]: KClosest/KRand and RClosest/KRand. For KClos-

est/KRand, the k2 closest samples are selected first, and then k
neighbors are randomly selected from this set for connection.

This introduces some randomness but still bounds the edge

length to the distance to the node’s k2-th neighbor. Typically,

k2 = 3k. RClosest/KRand selects k random neighbors from

those within a distance r. This ensures that k nodes are

selected for connection as long as the sampling density is high

enough (i.e., there are ≥ k nodes within a radius r).
Other methods use data structures to more efficiently com-

pute nearest neighbors. Metric Trees [24] organize the nodes

in a spatial hierarchical manner by iteratively dividing the

set into two equal subsets resulting in a tree with O(log n)
depth. However, as the dataset dimensionality increases, their

performance decreases [16]. Thus, their performance will de-

grade with increasing robot (protein) complexity. KD-trees [3]

extend the intuitive binary tree into a D-dimensional data

structure which provides a good model for problems with high

dimensionality. However, a separate data structure needs to be

stored and updated each time a node is added to the roadmap.

Approximate neighbor finding methods address the running

time issue by instead returning a set of approximate k-closest

neighbors. These include spill trees [16], MPNN [25], and

Distance-based Projection onto Euclidean Space [20]. These

methods usually provide a bound on the approximation error.

D. Distance Metrics

The distance metric plays an important role in determining

the best connection to attempt. A distance metric is a function

δ that computes some “distance” between two conformations

a = 〈a1, a2, . . . , ad〉 and b = 〈b1, b2, . . . , bd〉, i.e., δ(a, b) →
R, where d is the dimension of a conformations. Here, a1 . . .
and b1 . . . are the φ and ψ torsional angles for each protein

conformations. A good distance metric generally predicts how

likely it is that a pair of nodes can be successfully connected.

Their success varies and is dependent on the nature of the

problem being studied. In this study we look at the following

set of distance metrics that are commonly used for motion

planning:



Euclidean. The Euclidean distance metric gives equal

weighting for all dimensions:

δEucli(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (ad − bd)2.

Rigidity Analysis Distance Metric. Rigidity analysis [11,

12] may be used to define a distance metric. A rigidity map,

r, marks residue pairs i, j if they have the same rigidity

relationship: 2 if they are in the same rigid set, 1 if they are

in the same dependently flexible set, and 0 otherwise. Rigidity

maps provide a convenient way to define a rigidity distance

metric, rdist(a, b), between two conformations a and b where

n is the number of residues:

δRig(a, b) =
∑

0≤i<j≤2n

(ra(i, j) 6= rb(i, j)).

More details about this distance metric can be found in [23].

Cluster Rigidity Distance Metric. The cluster distance

metric is very similar to the rigidity analysis distance metric

but it instead only marks residue pairs if they belong to the

same rigid cluster. See [23] for more details.

Root Mean Square Distance. The protein model has 6

atoms for each amino acid, namely C,C(α), R,O,H . Thus a

protein with n amino acids will have 6n atoms. Denoting the

coordinates of these atoms as x1 to x6n, the root mean square

distance (RMSD) between conformations a and b is

δRMSD(a, b) =

√

(xa1 − xb1)
2 + (xa2 − xb2)

2 + ...+ (xa6n − xb6n)
2

6n
.

Least RMSD (lRMSD) is the minimum RMSD over all rigid

body superpostions of a and b. We use lRMSD in this work.

Knot Theory Distance Metric. This metric examines

the topological similarity and differences between confor-

mations [9] by looking at crossing numbers. The resulting

distance is

δKT(a, b) = 1/4π
∑

i

∑

j

Aij

where Aij is the area on the sphere covered by vectors created

between a and b. See [9] for more details.

E. Adaptive Neighbor Connection

Adaptive Neighbor Connection (ANC) generates a set of

neighbors to a candidate sample q for connection using a list of

connection methods cm1, cm2, . . . , cmm. ANC learns a selec-

tion probability pi for each CM based on its prior success and

cost for the given input problem. As each CM is used, ANC

updates the probabilities accordingly. This approach is similar

to the adaptive approach for selecting sampling methods in

Hybrid PRM [10], Algorithm 1 gives a description of ANC

during roadmap construction. ANC naturally favors CMs with

good performance and invokes them more frequently.

Algorithm 1 ANC

Input. A connecting vertex q, a set of connection methods

CM , a local planner lp and a graph G.

Output. A connected graph G where additional edges are

added over the input graph.

Require: Let P be a set of probabilities such that pi is

the probability selecting cmi as the connection method.

Initialize pi = 1/|CM |, ∀pi ∈ P .

1: Randomly pick a connection method cmi according to P
2: N = cmi.FIND NEIGHBORS(q,G)

3: for each n 6= q ∈ N do

4: if lp.IS CONNECTABLE(q, n) then

5: G.ADD EDGE(q, n)

6: end if

7: end for

8: Let r be the success rate of lp over N
9: Let c be the cost incurred

10: Update (P, r, c) according to Equation 5 and Equation 4

III. LEARNING SELECTION PROBABILITIES

ANC learns the best CM to use based on the performance

of each CM over time. If successful connections increase

as a result of the neighbors provided to the local planner,

the CM gets rewarded and its probability of getting chosen

during the next connection attempt increases. Otherwise, it

gets punished and its probability decreases. We also adjust its

probability based on the cost. This cost inversely affects the

selection probability. Potential energy computations take up a

large portion of the total computation time and thus is a good

measure of cost. In the results presented here, we calculate the

cost as the number of potential energy calls incurred by the

local planner.

ANC maintains a weight for each CM similar to Hybrid

PRM [10]. These weights keep track of the past performance

of each CM. ANC initializes each weight wi to 1. Based on the

weights, ANC computes in a step wise manner a probability

p∗i for cmi that is insensitive to the change in the cost:

p∗i = (1− γ)
wi(t)

m
∑

j=1

wj(t)

+ γ
1

m
, i = 1, 2, ...,m, (1)

where wi(t) is the weight of cmi in step t, t is the number

of connection attempts made, and γ is a fixed constant. The

probability p∗i is a weighted sum of the relative weight of cmi

and the uniform distribution. This ensures that each CM has

some chance of being selected.

Let xi be the reward for the cmi that was selected.

xi = α+ (1− α)(1 −
yi(t)−minyi(t)

maxyi(t)−minyi(t)
) (2)

where yi(t) = current edge weight, minyi(t) = minimum

edge weight recorded during the current timestep. maxyi(t)
= maximum edge weight recorded during the current timestep

and α = a constant value used to normalize the reward. All



other rewards for that time step are 0. The reward is thus a

function of the edge quality (weight) and the local planner

success and attempts. To update the weights, we first take into

account an adjusted reward that is not dependent on the cost

accrued (calculated as the cost insensitive probability):

x∗i = xi/p
∗
i , i = 1, 2, ...m. (3)

Then we update the weights for all the connection methods:

wi(t+ 1) = wi(t) exp
γx∗i
m

, i = 1, 2, ...m. (4)

The new weight is the current weight multiplied by a factor

that depends on the reward received. The exponential factors

enable the weights adapt quickly.

We now include the cost in the selection probability:

pi =

p∗

i

c i
m
∑

j=1

wj(t)
p∗

i

c j

, i = 1, 2, ...K, (5)

where ci is the average cost of attempting to connect i. Thus,

a high cost CM has a smaller selection probability.

IV. EXPERIMENTAL RESULTS

We study how ANC performs in practice on several small

proteins in comparison to selecting a single CM for the

entire execution. For each protein studied, we incrementally

construct a roadmap as outlined in Sections II-B until the

distribution of folding pathway types (as defined by their

secondary structure formation order) has stabilized. See [22]

for details on the incremental construction and pathway type

stabilization process.

We study several different proteins of varying size and

structure, see Table I. We compare the performance of 6

distance-based CMs using the distance metrics defined in

Section II-D against the performance of ANC with these 6

CMs as input.

We measure both the time to construct a stable roadmap and

the quality of the folding pathways it contains. We quantify

the quality of folding pathways as the weight of each edge

(i.e., energetic feasibility) times the dominance of that edge

(i.e., the number of folding pathways that traverse that edge).

Recall that ANC uses both edge quality and cost to learn

CM performance. Figure 1 summarizes the results. (For both

metrics, lower values are better.)

In all cases, each method produced the same secondary

structure formation order in its dominant folding pathways

as seen in experiment (given in Table I). Thus, the overall

approach is robust to this ordering.

From Figure 1, it is clear that there is not one single best

method for every input. For example, KClosest-Euclidean is

the fastest for 1PGA but slower than average for NUG2 while

KClosest-Rigidity is the fastest for NUG2 but slower than

average for 2PTL. Interestingly, these three proteins have the

same secondary structure makeup and similar overall folds.

Thus, performance cannot be predicted based solely on these

properties of the native state. A similar observation may

be made about the resulting roadmap quality. For instance,

KClosest-KnotTheory produces the best quality for 1PGA but

one of the worst quality roadmaps for NUG2. Not only does

performance vary widely, it is also difficult to predict.

While specific performance from protein to protein is in

general unstable, there are some general trends that appear.

As expected, there is a tradeoff between time and quality. The

slower methods tend to produce the highest quality roadmaps.

In fact, KClosest-KnotTheory and KClosest-lRMSD are con-

sistently the two slowest methods for every protein but produce

higher quality roadmaps on average.

ANC is able to adapt to the different protein inputs and

make selections that while may not be the best choice in terms

of time and quality for every protein, it is almost never the

worst where the worst performance can be quite poor. (The

only instance where it is the worst performance is in terms

of quality for 1PGA. However, for this protein and metric,

its performance is similar to 4 of the 6 individual methods.)

We see this adaptation clearly when looking at ANC’s final

selection probabilities for each individual method, see Table II.

For example, ANC learns to use KClosest/KRand-Euclidean

for 1PGA, and this method has good individual performance in

terms of time and moderate performance in terms of quality

(see Figure 1). However, for NUG2 ANC learns not to use

this method as its individual performance is much poorer (see

Figure 1. It never selects KClosest-KnotTheory or KClosest-

lRMSD with large probabilities due to their high cost.

Finally, we look at the cumulative performance of each

method across all protein studied. Figure 2 shows the per-

centage difference between each method’s performance across

all proteins and the best total performance across all proteins

for both time and quality. Overall, KClosest-Euclidean is

the fastest and KClosest-lRMSD produces the highest quality

paths, thus the percentage difference for these two methods

on these two metrics is 0. However, neither method is the

best performing on both metrics. KClosest-Rigidity and ANC

balance time and quality the best, and in many cases signif-

icantly better than other methods (e.g., KClosest-Cluster and

KClosest/KRand-Euclidean).

V. CONCLUSION

In this work, we present an adaptive method to select ap-

propriate connection methods in the context of PRM roadmap

construction. ANC monitors the performance and cost of

various connection methods and adjusts their selection proba-

bilities accordingly. The result is an algorithm that can select

appropriate methods for different inputs. We compared ANC

performance in terms of time and resulting roadmap quality

to 6 different distance-based connection methods. ANC, while

not always the best performing method for any individual

input, performs well over the entire set.
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Protein PDB ID # Residues Secondary Structure Makeup Experimental Formation Order

G 1PGA 56 1α + 4β [α,β1,β3,β4],β21 [α,β4],[β1,β2,β3]2

G Variant 1 NuG1 56 1α + 4β β1-2,β3-43

G Variant 2 NuG2 56 1α + 4β β1-2, β3-43

A 1BDD 60 3α [α2,α3],α11 [α1,α2,α3]2

L 2PTL 62 1α + 4β [α,β1,β2,β4],β31 [α,β1],[β2,β3,β4]2

Cardiotoxin analogue III (CTXIII) 2CRS 60 6β Unknown

Agrobacterium tumefaciens VirC2 2RH3 121 4α + 2β Unknown

TABLE I
PROTEINS STUDIED AND THEIR SECONDARY STRUCTURE FORMATION ORDER FROM: 1HYDROGEN OUT-EXCHANGE EXPERIMENTS 2PULSED

LABELING/COMPETITION EXPERIMENTS AND 3Φ-VALUE ANALYSIS BRACKETS INDICATE NO CLEAR ORDER.
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Fig. 1. Performance of each individual CM and ANC in terms of (a) time and (b) roadmap quality.

TABLE II
ANC’S FINAL SELECTION PROBABILITIES FOR EACH PROTEIN. BOLDFACE ENTRIES INDICATE THE WINNING PROBABILITY IN EACH.

PDB KClosest- KClosest- KClosest- KClosest- KClosest/KRand- KClosest-
ID Cluster Euclidean Rigidity KnotTheory Euclidean lRMSD

1PGA 0.238 0.313 0.175 0.025 0.089 0.160

NUG1 0.833 0.060 0.027 0.010 0.040 0.030
NUG2 0.009 0.023 0.937 0.004 0.013 0.013
2PTL 0.022 0.903 0.034 0.004 0.018 0.018

1BDD 0.017 0.011 0.017 0.006 0.935 0.015
2CRS 0.033 0.137 0.757 0.014 0.027 0.031
2RH3 0.037 0.836 0.049 0.009 0.043 0.024
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