A Hybrid Approach To Processing Big Data Graphs on Memory-Restricted Systems

Harshvardhan, Brandon West, Adam Fidel, Nancy M. Amato, Lawrence Rauchwerger
Parasol Laboratory
Dept. of Computer Science and Engineering
Texas A&M University
{ananvay, west, fidel, amato, rwerger}@cse.tamu.edu

Abstract—With the advent of big-data, processing large
graphs quickly has become increasingly important. Most exist-
ing approaches either utilize in-memory processing techniques
that can only process graphs that fit completely in RAM, or
disk-based techniques that sacrifice performance.

In this work, we propose a novel RAM-Disk hybrid approach
to graph processing that can scale well from a single shared-
memory node to large distributed-memory systems. It works
by partitioning the graph into subgraphs that fit in RAM and
uses a paging-like technique to load subgraphs. We show that
without modifying the algorithms, this approach can scale from
small memory-constrained systems (such as tablets) to large-
scale distributed machines with 16, 000+ cores.

Keywords-parallel graph processing; out-of-core graph algo-
rithms; big data;

I. INTRODUCTION

In the past decade, processing large-scale graphs has
become increasingly important in a large variety of domains,
from scientific computing to extracting information from
social networks. Processing these graphs in a reasonable
time usually requires parallelism. However, parallelizing
graph algorithms efficiently is a challenging problem that
has received significant attention for several decades [18].

Over the past few years, many systems specialized for
graph-processing have emerged to address this issue ([7],
[8], [10], [13], [14]). These systems are either designed
for in-memory or disk-based graph-processing. In-memory
systems, whether distributed or shared-memory, store and
process the entire graph in RAM. While this can provide
good performance, the size of the graph that can be pro-
cessed is limited by the amount of RAM available in the
system. Disk-based systems, on the other hand, are not
limited by RAM availability, but sacrifice performance due
to disk I/O. Recently, a hybrid system (GraphChi [12]) was
proposed to allow a single-node system to process large
graphs using a parallel sliding-window approach. However,
this was limited to a single shared-memory node.

In this paper, we propose a graph processing system that
can scale well from small memory-restricted systems to
large distributed-memory machines. This RAM-disk hybrid
graph-processing system provides a unified approach to
utilize the available resources (RAM, disk, cores) efficiently
and seamlessly. Our system decouples algorithms from the
details of the machine, allowing users to write fine-grained

vertex-centric algorithms, that can run efficiently without
modification on different systems. We use an approach
similar to memory paging, but applied to subgraphs, that
loads subgraphs of the graph in memory, processes them,
and then stores them back to disk. A crucial difference
from paging is that while paging uses fixed-size pages,
our approach uses partitions based on graph structure.
This preserves structural locality that can reduce disk I/O.
We use an asynchronous push model that allows paged-in
vertices to be processed, while updates to their neighbors
are asynchronously pushed, or deferred, until the neighbors
are loaded. We also propose system-level optimizations
that do not require changes to algorithms, but can reduce
disk I/O. An implementation of our approach in the STAPL
Graph Library [8] allows us to process large graphs on
systems ranging from small-scale systems such as off-the-
shelf PCs or Android tablets, to large high-end clusters.
Our results show that our subgraph-paging based approach
and asynchronous push model, together with optimizations,
provides 3 — 12x faster graph processing on a single node
than the best alternative, GraphChi, and extends efficiently
to multiple nodes which GraphChi cannot.

Our contributions include:

o A hybrid subgraph-paging based approach to process-
ing large graphs, allowing both in-memory and out-of-
core processing.

« An implementation that transparently allows fine-
grained level-synchronous graph algorithms to benefit
from our hybrid approach without code modifications.

« An experimental evaluation showing good scalability
and showing improved performance over existing disk-
based and in-memory graph processing frameworks on
systems ranging from small Android tablets to off-the-
shelf PCs to large clusters with 16,000+ cores.

II. OVERVIEW OF OUR APPROACH
We provide a graph-processing engine (the
graph_paradigm) to control the execution of algorithms, that
can effectively utilize available resources for fast, scalable
processing of graphs. To do this, we allow users to express
their algorithms in a vertex-centric fine-grained manner that
abstracts them from details of parallelism and exposes the

maximum amount of parallelism available in the algorithm.
The graph algorithms themselves do not change and are
decoupled from execution policies (distributed/shared,
disk/in-memory, etc.), allowing the execution strategies to
change, without changing the algorithm.

Our approach for out-of-core processing is similar to pag-
ing, as we partition the input graph into subgraphs (logical
partitions), such that each subgraph may fit in main-memory.
When needed, the subgraphs are paged-in from disk to main-
memory and processed. In this asynchronous push model,
vertices of a subgraph are only processed in-memory, and
updates to neighboring vertices are asynchronously pushed
to the subgraphs as follows. If the subgraph containing a
neighboring vertex is also in memory, the vertex is updated.
If the subgraph is stored on disk, the update is written to
disk and applied the next time the subgraph is loaded. The
approach differs from paging, as we reflect our pages at
a logical (subgraph) level, versus a non-semantic (kilobyte,
megabyte) level. This allows us to take advantage of tem-
poral locality in subgraphs.

We also implement multiple optimizations to reduce disk
I/0. These optimizations include caching hub vertices (i.e.,
vertices with very large degrees) when they are written to
disk, skipping graph-structure writes for unmodified graphs,
and over-partitioning subgraphs to utilize the RAM to the
fullest extent. The optimizations are system-level, and there-
fore do not involve modifying the algorithms.

This technique and its implementation is described in
more detail in Section IV. The next section describes how
algorithms are expressed in the asynchronous push model.

III. PRELIMINARIES

Our approach is applicable to frameworks using the asyn-
chronous push model. In this paper, we assume that algo-
rithms are expressed using the k-level-asynchronous (KLA)
two-operator algorithmic specification presented in [9],
which is one such push model that was shown to be
generally applicable. This section provides an overview of
the KL A graph-processing paradigm and how algorithms are
expressed in it.

A. The KLA Graph Paradigm

KLA is a graph-processing paradigm that unifies
Bulk Synchronous Parallel (BSP) [21] and asynchronous
paradigms, allowing each BSP superstep to execute up to
k levels of the algorithm asynchronously. KLLA allows users
to express fine-grained vertex-centric graph algorithms. KLA
algorithms are decoupled from parallelism and communica-
tion details, as well as from the processing of the graph,
whether it is level-synchronous or asynchronous, or stored
on disk or in RAM.

This section shows how an example algorithm, breadth-
first search (Figure 2) is expressed in the KLA paradigm.
Breadth-first search (BFS) is an important graph algorithm

void graph_paradigm (Graph graph, VertexOp wf, NeighborOp uf)
bool active = true;

while (active) {
pre_compute (graph);

// apply vertex—operator to each vertex, reduce to
// find #active vertices. wf returns true (active),
// or false (otherwise), spawns neighbor—operators.
active =

reduce (map (vertex_wf(wf, visitor(uf)),
global_fence() ;

graph), logical_or());

post_compute (graph);

Figure 1. Pseudocode for the graph paradigm.

due to its extensive usage in traversing graphs, and due to its
indirect usage as a part of numerous other graph algorithms,
such as betweenness centrality. A BFS of a graph marks each
of its vertices with their distance from a given source vertex.

To express an algorithm, the user provides two operators
— a vertex-operator (Figure 2(a)) which performs the com-
putation of the algorithm on a single vertex and a neighbor-
operator (Figure 2(b)) that updates the neighbor-vertices of
the source vertex with the results of the computation. These
two operators are then provided to the KLA graph paradigm
along with the input graph (Figure 2(c)). The graph paradigm
(Figure 1) executes the provided operators on active vertices
of the input graph and handles communication, termination-
detection of the algorithm, current active vertices, and the
execution strategy (level-synchronous, asynchronous, KLA).
The user’s operators are decoupled from these details and
can focus on expression of the algorithm.

For BFS, the vertex-operator checks if a vertex is active
(grey) and propagates its distance to its neighbors through
the neighbor-operator. The neighbor-operator updates the
distance of the neighbor if needed, and marks it as active
(grey). Active neighbors are processed by vertex-operators
in the next iteration. Other algorithms such as connected
components, k-core, PageRank, graph coloring, topological
sort can also be expressed in a similar manner.

B. PageRank and Other Algorithms

The PageRank algorithm [3], [16] is a representative
random-walk algorithm used to rank web-pages on the
internet in order of relative importance. The PageRank com-
putation proceeds in iterations, where each vertex calculates
its rank in iteration ¢ based on the ranks of its neighbors in
iteration ¢—1, and then sends its new rank to its neighbors for
the next iteration. Termination happens upon convergence
of ranks or upon reaching a predetermined threshold for
iterations. The STAPL GL implementation of PageRank’s
vertex and neighbor operators is shown in Figure 3.

Other algorithms, such as k-core decomposition and
connected components can be expressed in a similar two
operator fashion. More details can be found in [9].

bool bfs_vertex_op(vertex v)
if (v.color == GREY)
v.color = BLACK;
VisitAllNeighbors (bfs_neighbor_op (_1, v.dist+1), v);
return true; // vertex was Active
else return false; // vertex was Inactive

/! Active if GREY

(a) vertex-operator

bool bfs_neighbor_op(vertex u, int new_distance)
if (u.dist > new_distance)
u.dist = new_distance; // update distance
u.color = GREY; // mark to be processed
return true; // vertex was updated
else return false;

(b) neighbor-operator

void BFS(Graph graph, vertex source)
source.color = GREY;

graph_paradigm (bfs_vertex_op () , bfs_neighbor_op(), graph);

(c) Algorithm-driver

Figure 2. The fine-grained BFS algorithm.

bool pagerank_vertex_op(Vertex v)

if (v.iteration < 20)
v.rank = 0.15/num_vertices + 0.85xv.sum_ranks;
v.iteration ++;
v.sum_ranks = 0;
int n = v.neighbors ().size();
VisitAllNeighbors (v, pr_neighbor_op(_1, v.rank/n));
return true; // vertex was Active

else return false; /! vertex was Inactive

(a) vertex-operator

bool pr_neighbor_op(Vertex u, double rank)
u.sum_ranks += rank;
return true;

(b) neighbor-operator

Figure 3. The PageRank algorithm.

IV. HYBRID GRAPH PROCESSING

In this section, we describe our hybrid approach to pro-
cessing in-memory and out-of-core graphs. While our ap-
proach is applicable to frameworks using the asynchronous
push model, for this work we assume that algorithms are
expressed using the KLA two-operator algorithmic specifi-
cation presented in Section III. Using this specification, our
approach can utilize the vertex- and neighbor-operators to
keep the algorithm unchanged from its in-memory variant,
while our paradigm handles the execution (in-memory or
out-of-core) and storage (which parts of the graph should
be in-memory vs. on-disk).

A. Graph Storage

We start with an input graph partitioned into p subgraphs.
Each subgraph is assigned to a location (a single process-
ing element), and a location can have multiple subgraphs
assigned to it. The location to which a subgraph is assigned
is its home location, which is responsible for managing
the subgraph and executing requests on its vertices. Each

memory disk

N\Sh)

vertex list | ‘9000000 0000000
edge list - — = Lo
pending up,

updates

Figure 4. Diagram of the storage paradigm with two subgraphs in memory
and two subgraphs on disk. An update on a loaded vertex is being applied
in memory while an update to an un-loaded vertex is being stored in the
pending updates shard.

subgraph can be present either in memory (loaded) or
on disk (un-loaded), and each location can independently
decide when to load and un-load which subgraphs based on
memory availability.

File format for sub-graphs. Each subgraph is stored in
a binary format across three shards (Figure 4). The first
shard is the vertex list, which contains the vertices of the
subgraph, along with any vertex data (such as level for BFS,
rank for PageRank, and ID for connected components). The
second shard is the edge list, which contains the list of edges
for each vertex, in order, including any data for the edges.
These are stored separately to allow for optimizations when
a vertex’s edges need not be loaded, for indexing into the
vertex list, and also to enable us to bypass rewriting the edge
list shard unless the graph structure changes (Section IV-C).
The third shard, pending updates, stores any incoming and
pending updates to vertices belonging to that subgraph.
When the subgraph is loaded, the updates shard is read and
all outstanding updates are applied to corresponding vertices.

B. Processing Out-of-Core Graphs

We use an approach similar to paging to process out-
of-core graphs (Figure 6). The computation proceeds in
bulk-synchronous supersteps, and for every superstep, each
location loads one or more of its active subgraphs (based
on available RAM) in some schedule (for our experiments,
we choose a round-robin policy), processes the vertices and
stores the subgraphs back to disk, including any modified
state. A different subset of subgraphs is then loaded and
processed, until all active subgraphs have been processed for
the given superstep. The process is then repeated for the next
superstep until there are no remaining active vertices (i.e.,
vertices that will actively compute in the current superstep).

If the machine has sufficient RAM to store the graph and
metadata in-memory, all subgraphs can be kept in RAM,
and no penalty is paid for disk access. If the RAM is not
sufficient, the paradigm will load and unload subgraphs to
allow the seamless execution of the algorithm.

Inactive vertices or sub-graphs. Graph algorithms are often
iterative, and for a large class of graph algorithms, not every
vertex is actively processed in each iteration. An example
of this is shown in Figure 5, which plots an execution
profile in terms of the number of active vertices, for the
first ten iterations of various representative algorithms. As
can be observed, the algorithms shown, with the exception
of PageRank, only process a very small fraction of their
vertices in any given iteration, and only a few iterations
process any significant fraction of the vertices. This provides
an opportunity to skip reading and loading vertices that will
not be processed.

In our approach, if a vertex’s value is updated, it is marked
as active for the next superstep. This implies that the vertex
may potentially be processed in the next superstep using
a vertex-operator, which can access its adjacent edges. For
such vertices, it is required to load their adjacent edges.
However, for inactive vertices in a given superstep, we can
skip the loading of their adjacent edges, as it is guaranteed
that such vertices will not have the vertex-operator applied to
them. The inactive vertices and their values are still loaded in
memory, however, to allow incoming updates to be applied
to them from their neighboring vertices.

As an extension, if all vertices of a given subgraph are
inactive for a given superstep, we skip the loading of the
entire subgraph for that superstep. This is common for many
graph traversals (such as BFS), which start from a single
vertex, and only a few vertices are active in most iterations.
This is also commonly observed in other graph algorithms
(Figure 5). In such cases, a significant amount of time can be
saved by not reading and loading entire inactive subgraphs
from disk.

Figure 7(a) shows the impact of skipping inactive sub-
graphs (Optl), along with the optimization of skipping
inactive vertices (Optl+2) vs. the baseline execution time
for the Graph 500 benchmark input with 16 million vertices
and 256 million edges on a PC with 4GB of RAM. Skipping
inactive subgraphs by itself may not provide a significant
improvement as opportunities of skipping entire subgraphs
for Graph 500 inputs are few. However, for graphs that can
be partitioned well, this can provide substantial benefits.

Updates. We use a policy which defers updates to subgraphs
not present in memory to avoid unnecessary paging. Updates
produced during processing of in-memory subgraphs are
asynchronously forwarded to the home location of the target
vertex. If the target vertex is present in RAM, the update is
applied to it. If the target vertex is stored on disk, the update
is written to a pending updates shard corresponding to the
target vertex’s subgraph, and applied when that subgraph
is next loaded. This process is illustrated in Figure 4. The
deferred paging policy works, as our asynchronous update
model only guarantees that the effect of updates in superstep
1 will be visible in superstep 7+ 1, and therefore, the effects

Active Vertices

Active Vertices per lteration
for Various Algorithms on Twitter

Active Vertices per lteration
for Various Algorithms on Twitter

1E+08 4 100% 4
h —n = BFS = BFS
J B cc % 75% cC
\ =+ PageRank 8 ° + PageRank
+ k-Core o + k-Core
', > *
1E+04 ® o 50%
= 2
- °
-
. ; 25% p—n
$
4 ‘ =
1E+400 = 0% n—t PP
1 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Iteration # Iteration #
(a) (b)
Figure 5. Variation in active vertices in the first ten iterations of various

algorithms on the Twitter graph, shown as (a) count on log-scale, and (b)
percentage of total vertices.

for_each (superstep € algorithm)
for_each (subgraph € graph)
subgraph.load (); // load subgraph to RAM
subgraph.apply_pending_updates ();

for_each (v € subgraph.vertices ())
updates = vertex—operator(v);

Asynchronously forward updates to home locations:
Apply updates to vertices in in—RAM subgraphs;
Store updates to on—disk subgraphs as pending;

subgraph.store (); // store to disk

Figure 6. Pseudocode for the off-core graph paradigm.

of updates need not be immediately visible. Another benefit
of the push-model is that it does not have to load and read
neighboring vertices’ states, and can simply send updates to
neighbors asynchronously.

Dynamic graphs. Our paradigm supports dynamic graph
operations such as adding and deleting edges or adding
and deleting vertices as the computation progresses. These
operations are treated in the same way as regular updates de-
scribed above. Modifications to graph structures are applied
directly to subgraphs loaded in RAM, or are stored to an
outstanding modifications shard if the subgraph is stored on
disk and applied immediately upon loading. If a subgraph
is modified during a superstep, a dirty-bit is set to indicate
the modification, ensuring that the modified subgraph will
be written to disk with the updated changes.

C. Optimizations To Reduce Disk 1/0

The majority of time for processing out-of-core graphs
is spent in disk I/O. Therefore, we propose and implement
several optimizations to reduce the number of bytes that need
to be read from or written to disk. These optimizations are
internal to the storage paradigm and therefore do not require
any changes to the user algorithm.

Graph structure writes. Many algorithms do not change
the graph structure (i.e., they do not add or delete vertices

or edges) but only update the values stored on vertices and
edges of the graph. For such algorithms, we do not need
to write back the structural information of the graph when
storing a subgraph. In our implementation, we achieve this
by separating the structure (edges) and values into separate
shards (Section IV-A). The edge list shards are only updated
if the graph structure was modified. The vertex list shards
contain the vertex IDs and vertex values, and therefore are
updated if the values change.

Multiple sub-graphs (over partitioning). Multiple sub-
graphs can be loaded in RAM at the same time. Hence,
using smaller subgraphs allows finer-grained control, while
still utilizing the available RAM to the fullest extent by
loading multiple small subgraphs at once. This also increases
the probability of a subgraph being inactive and therefore
skipped. However, there is a trade-off between the size of a
subgraph and the overhead of metadata for each subgraph.

In-memory cache for hub vertices. Many social-networks
and web-graphs exhibit small-world scale-free behavior with
a power-law degree distribution. This implies the existence
of hub vertices which are connected to a large number of
neighbors. For such vertices, especially if they have a large
in-degree, there may be multiple updates being applied to
them from their neighbors in the same superstep. In such
cases, if the subgraph containing the vertex is stored on
disk, the updates will be written to the updates shard. These
numerous writes can be avoided by using an in-memory
write-back cache for such hubs. In our implementation, the
hub vertices are identified at the time of graph creation (or
modification) using a simple linear scan of the vertex de-
grees. An in-memory cache corresponding to each subgraph
maps the hub vertices within the subgraph and stores its
cached value.

When the subgraph is present in RAM, the cache is
inactive and any updates are directly applied to the hub
vertex. However, if the subgraph exists on disk, the cache
is active and applies all incoming updates to the cached
value. When the on-disk subgraph is next loaded, the cached
value is written back to the original hub. Since the number
of such hubs is usually small, the cache does not use a
significant amount of resources. However, the time saved in
writing, and then later reading and applying the updates can
be significant. The size of the cache may be user specified,
or determined from profiling the system.

Figure 7(b) shows the effect of cache size on algorithm
performance for the connected components (CC) and BFS
algorithms on a Graph500 benchmark graph. We found a
value of 15 hubs per 1 million vertices to provide per-
formance benefits of 15 — 40% for a system with 4GB
RAM. Increasing the cache size beyond this results in larger
overhead of maintaining the cache and diminishing benefits
due to the power-law degree of Graph500 inputs.

Effect of Optimizations on BFS Exec. Time vs. Hubs-Cache Size
140% 280
B %Improvement 4 CC

250 BFS

120%

100% 112.3%
100.0% 220
80%
190

60%

Exec. Time

160
40%
130
20%

100

0% 0 80 160 240 320

Optt Hubs-Cache Size
(a) ®)

Figure 7. Effects of optimizations on performance: (a) Skipping inactive
subgraphs (Optl) and inactive vertices (Opt2), (b) Effect of varying size
of hubs-cache for BFS and connected components (CC). Both plots run on
Graph 500 input graph with 16 million vertices and 256 million edges, on
a PC with 4GB RAM.

1600

Baseline

Opt1+2

D. Analysis of I/0 Costs

We use the I/O model described by Vitter [15], [5] to
analyze the I/O costs of our approach. This model expresses
the cost of an algorithm using the number of block-transfers
of size B bytes from disk to main memory. An assumption
in their model is that a disk can transfer a contiguous block
of B bytes of data about as fast as it can transfer a single
bit. Our analysis makes a worst case assumption that none
of the optimizations in Section I'V-C are applied and that all
vertices in the graph are active.

We assume a graph of |V vertices and |E| edges, of
total size IV bytes, is partitioned into m subgraphs, and each
subgraph of size % bytes contains the subset of the graph’s
vertices and edges that make up the partition. Based on this,
all subgraphs of a graph can be transferred using P = %
block transfers. We also assume p,,,4. compute nodes in the
system, each with local disk and with main memory of M
bytes, where % < M, and that each compute node stores
p:"o'de subgraphs on local disk. Then, the total 1/O cost (C'p)

of our approach per superstep of the algorithm is given by
summing the cost of reading and writing for the superstep:

Cp(G) = C5=U(G) + CE"*(G) (M

For each superstep, in the worst case, we process every
subgraph. Therefore, the total number of block transfers
for reading per node is at most ﬁ. Similarly, for each
superstep, in the worst case, we would update the neighbor
for every edge in the graph, giving a total number of block

. E
transfers for writes per node of B-z‘o —. Therefore:
node

P, g
B'pnode

Cp(G) <

h Pnode

2

Finally, if the algorithm performs S supersteps, the total I/O
cost for processing the graph is given by:

p |E|
+
Pnode B- Pnode

Cpl°(G) < S - (

) 3)

16k

For comparison, as shown in [12], using the same model,
GraphChi has an upper-bound of % + ©(P?) for the 1/0
cost of a single superstep. This is significantly more than
in Equation 2, which is linear in the number of partitions.
This is due to GraphChi’s parallel sliding-window approach,
where each superstep is executed in P execution intervals,
and each execution interval requires O(P) non-sequential
disk reads to load the edges from P — 1 sliding shards
for each of the P execution intervals in that superstep,
giving a quadratic complexity. We also note that as our
approach supports distributed-memory machines, each with
independent disks, we can reduce our I/O costs by a factor
of Prode, Whereas GraphChi is limited to a single node.

V. IMPLEMENTATION

We implemented our approach in the STAPL framework,
by extending the STAPL Graph Library (STAPL GL), which
previously supported in-memory graph computations only,
to support out-of-core processing. The API of the STAPL GL
did not change, as our technique is transparent to the user.
This also allowed us to use the existing STAPL GL algorithms
without modification.

A. The STAPL Framework

STAPL [4] is a framework for parallel C++ code de-
velopment. STAPL’s core is a library of C++ components
implementing parallel algorithms (pAlgorithms) and dis-
tributed data structures (pContainers). The STAPL Run-
time System (RTS) and its communication library ARMI
(Adaptive Remote Method Invocation) abstract the under-
lying platform, providing portable performance, thus elim-
inating the need to modify STAPL applications. The RTS
abstracts the physical parallel processing elements into lo-
cations, components of a parallel machine such that each
one has a contiguous memory address space and associated
execution capabilities (e.g. threads). ARMI uses the remote
method invocation (RMI) abstraction to allow asynchronous
communication on shared objects (p_objects), while hid-
ing the underlying communication layer (e.g MPI, OpenMP,
threads, etc.). Users of the RTS, such as the pContainers
and the PARAGRAPH, can create p_ob jects over locations
and invoke RMIs on them.

B. The STAPL Graph Library

The STAPL Graph Library (STAPL GL) [8] consists of a
generic parallel graph container (pGraph), graph pViews,
and a collection of parallel algorithms to allow users to easily
process graphs at scale. The pGraph container is built using
the pContainer framework (PCF) provided by STAPL.

STAPL GL algorithms are expressed using the KLA-
paradigm (Section III-A). The KLA paradigm applies user-
provided operators on the input graph to execute the algo-
rithm. It abstracts the execution, communication and paral-
lelism from the user. As the KLA two-operator algorithmic

specification implements an asynchronous push model, our
hybrid approach can use the same algorithms provided in
the STAPL GL, without modification.

The graph structure is stored in the pGraph, a distributed
container which consists of one or more base containers per
location. The subgraphs are stored in the base container,
which we allow to be stored in-memory or on-disk. The
base container also contains the in-memory hubs-cache,
if the optimization is enabled. To allow for loading and
storing subgraphs to disk, we extended the pGraph base
containers to provide serializing and deserializing capabili-
ties, and implemented the ability to read and write shards.
The asynchronous forwarding of updates is processed by a
two-level distributed directory which maps vertices to their
home-locations.

VI. EXPERIMENTS

In this section, we evaluate the performance of our ap-
proach on various platforms, and compare it with existing in-
memory and disk-based libraries. Our approach is evaluated
on a set of important graph mining and graph analytics
algorithms, and a variety of inputs. The input graphs include
the Graph 500 benchmark inputs [1], a benchmark for
data-intensive and graph applications, as well as real-world
graphs available to us.

Our experiments were run on multiple platforms — a Cray
XE6 machine with 153,216 cores (Hopper), and a smaller
Cray XE6m machine with 576 cores available to us. In
addition, we evaluated our technique on two 4-core PCs with
4GB RAM and 16GB RAM (respectively), both with 7200
RPM hard disk drives, and a 4-node commodity cluster with
two quad-core processors per node. Finally, we ran on an
EXYNOS 4 quad-core tablet running Android 4.0, containing
an ARM Cortex-A9 with 1GB of DDR2 main memory and
a 16GB MMC card for storage. Graphs were distributed as
specified by their input files, using a block distribution of
the vertices.

A. Comparison with in-memory libraries

We study our in-memory performance and compare it
with existing in-memory graph libraries using the Graph500
benchmark. Our approach is the only one among the li-
braries that can perform out-of-core computations, however,
our comparisons with both shared-memory and distributed-
memory systems still show competitive in-memory perfor-
mance with no penalty paid for disk-access when sufficient
RAM is available.

Figure 8 shows the execution times of various libraries
normalized to the time taken by our approach implemented
in the STAPL GL. We note that the STAPL GL performs
comparably to shared-memory libraries, and scales better
and is faster than other distributed-memory graph libraries
such as the Parallel Boost Graph Library (PBGL) [7] and
GraphLab/PowerGraph [13]. While our approach is 2x

slower than the Graph500 benchmark implementation [1]
up to 16 cores, once off-core, our approach scales better.
Our approach is initially slower as the benchmark imple-
mentation uses a raw array of integers to store the graph,
and as such does not have the overhead of a generic library.

As shown in Figure 8, and in Figure 9 on up to 16,384
cores, our approach outperforms other libraries in distributed
memory. PBGL uses ghost-vertices, which limits its scalabil-
ity as the ghost cells need to be kept synchronized. GraphLab
uses a pull-model, where each vertex synchronously reads
the values from its neighbors, which does not allow deferred
updates as in our asynchronous push model.

Finally, our approach is also seen to compare favorably
with shared-memory libraries. Green-Marl [11] is a domain
specific language (DSL) for graph computations in which
the DSL compiler is able to avoid the overhead of a generic
library and is around 1.5 — 2x faster than our approach in
shared memory. However, as the provided implementation
is limited to shared-memory only, it cannot run beyond
16 cores (1 node) on our Cray XE6m. Galois [10] is
another shared-memory graph library, that has performance
comparable to our approach.

BFS Execution Times Normalized to STAPL GL on Cray XE6m

0
B Our Approach ® Graph500

Graph500:
. EGraphLab mPBGL 2§a|e=,:24t 16
o Galois H GreenMarl ge-ractor=
2 10
%)
>
<
o
3
o 1
£
'_ I
16
Number of Processors
Figure 8. Execution times of Graph500 on various graph libraries

normalized to STAPL GL on CRAY XE6m. Shared-memory graph libraries
(Galois, GreenMarl) are shown to 16 cores.

B. Out-of-Core Performance

Single Node Performance. We compared STAPL GL’s sin-
gle node out-of-core performance with GraphChi, a graph-
processing system designed to solve large graph problems
on a single node efficiently. GraphChi is a sister project
of GraphLab that focuses on allowing the processing of
large graphs on a single-node computer using a parallel
sliding-window technique. In [12], the authors show how
GraphChi has comparable performance, even on a single
node, to existing frameworks, such as Spark, Hadoop and
GraphLab running on much larger machines.

GraphChi partitions the input graph into p partitions and
processes the partitions in a sliding-window. However, much

Graph500 Benchmark, Cray XE6
Weak Scaling, 2420 Vertices per core

10,000 ® Graph500 Benchmark N
+ PBGL
—_ 4 Our Approach
L 1,000
w
=
=3
=1 100
Qo
=
=2 L
<] y
£ 10 [
1
1 4 16 64 256 1024 4k 16k
Processors
Figure 9. Weak scaling of STAPL GL on the Graph500 benchmark input

on CRAY XE6 with 220 vertices per core. Y-axis shows throughput in
Mega-Traversed Edges per Second (MTEPS) in log-scale.

like in GraphLab, GraphChi’s pull-model reads neighboring
vertices’ values, which may require p — 1 reads for p par-
titions in the worst-case. Furthermore, as noted in [12], the
technique used in GraphChi is unable to take full advantage
of available RAM, as their model is not adaptive to the
resources.

Figure 10(a) shows the out-of-core performance of various
graph algorithms in the STAPL GL and GraphChi on a
4-core PC with 4GB RAM. For GraphChi, we ran the
experiments on different configurations and explored the
space of parameters to choose the fastest configuration for
comparison. As can be observed, STAPL GL’s push-model
provides 2.5 — 6x faster performance than GraphChi’s pull-
model. Further, our approach allows better scalability with
increasing RAM sizes. Figure 10(b) shows the same graph
on a 4-core PC with 16GB RAM. Increasing the RAM and
resources allows a 4x or better performance increase for
the STAPL GL. However, GraphChi is not able to optimally
utilize all available RAM, and therefore, STAPL GL is able to
perform 4—12x better with increased resources. GraphChi’s
k-core algorithm was designed to work with matrix inputs,
and did not accept edge-list or adjacency-list representations,
so thus we were unable to obtain comparative results for it.
We evaluated our performance on two real-world graphs.
Figure 14 shows performance of the STAPL GL on Twitter
and Friendster social-networks on a PC with 4GB RAM.

We studied the behavior of our approach with respect
to memory size in Figure 11 for breadth-first search and
PageRank on the Graph500 graph. As shown, total time
to completion decreases as we increase memory size. In
fact, at the largest memory size, where the graph fits in
memory, our approach performs the same as the in-memory
STAPL GL variant. When the available memory is restricted,
a majority of the subgraphs are present on disk. Therefore,
a higher number of updates to vertex values generated
during computation have to be written to disk, increasing
the load and store times. As the available memory increases,

larger portions of the graph can fit in memory, allowing
more updates to happen in RAM. When the entire graph
fits in memory, all updates happen in RAM, resulting in
negligible overhead due to loading and storing. We observe
this behavior for PageRank in Figure 11(b), where there
is a substantial improvement in runtime from 4 GB to 835
GB, which is significantly larger than the benefit in BFSé
(Figure 11(a)). This is due to a larger volume of updates~
generated by PageRank, and thus written to disk for the out-
of-core case, compared to BFS’s fewer updates from only
a subset of the graph’s vertices per superstep, as shown in
Figure 5. Due to this, the amount by which an increase in
memory improves performance is both input and algorithm
dependent.

Android Tablet Performance. To further test our approach
with limited RAM, we also tested on an Android tablet with
1GB RAM, using two cores. We use this as an extreme
example to test the performance of our method, and not
necessarily as a viable graph-processing system. Even so,
we were able to process the Graph500 input graph using our
approach, as seen in Figure 12. The time taken to execute
the algorithms was much higher than on a PC, due to the
different architecture of the processor, lower clock-speed,
lower RAM and far slower disk speed (the storage used
was a low power MMC card). The size of the input graph
was also limited due to the capacity of the memory-cards
available. However, this experiment demonstrates that our
approach can scale well to systems with limited memory as
compared to the size of the input graph. We were unable to
get GraphChi or other graph processing systems to run on
our Android tablet.

Multi-Node and Cross-Platform Performance. As we use
asynchronous forwarding and each subgraph is managed in-
dividually only by its home location, the technique naturally
extends to multiple nodes. Figure 13 shows the execution of
multiple algorithms on a distributed-memory system with
a graph that does not fit fully in RAM. As we increase
the number of nodes available, larger portions of the graph
can fit in RAM and more processors are available, allowing
faster execution. When the graph fits completely in RAM
(on 8 nodes), no penalty is paid for disk access, and the
fastest execution time can be observed.

We also tested our approach across platforms to demon-
strate its effective use of resources. Figure 15 shows the
Graph500 input graph scaling from an Android tablet to a
Cray XE6m machine with 128 cores. Figure 16 shows the
Twitter input graph on a PC, a cluster of 4 compute nodes,
and a Cray XE6m machine on 512 cores. Our framework is
able to accommodate processing these large graphs, while
adapting well to the resources available on each machine.
In this sense, the program is able to scale with the machine
without user-code modification.

Graph500 Web-Graph (4GB RAM)

1600
B STAPLGL

M GraphChi 1341

1200

800
555
458

253
155 129

O-Il =

BFS CcC PageRank k-core

(a)

Figure 10.

Time (sec)

600

450

300

Graph500 Web-Graph (16GB RAM)

B STAPLGL a2

B GraphChi

153

22

45
||
cc

(b)

39
||
BFS

PageRank k-core

STAPL GL running time (various algorithms) vs. GraphChi on

the Graph500 benchmark input with 16 million vertices, 256 million edges,
running on PC with (a) 4GB RAM and (b) 16GB RAM.

Phase Breakdown for BFS
with Graph 500 on Core 2 Quad

|]
180~ load
process
Wistore
O
o' —
E
50-
o-
4 8 12
Memory size (GB)
(@)
Figure 11.

Phase Breakdown for PageRank
1200yvith Graph 500 on Core 2 Quad

900- load

process

Mistore

600-

Time (s)

300-

4 8 12
Memory size (GB)

(b)

Breakdown of times for different phases (loading, storing and

processing) for (a) BFS and (b) PageRank with respect to memory size.

Graph500 Web-Graph (Android, 1GB)

600
B STAPLGL

450
370

300
225

Time (sec)

150

BFS cC

Figure 12.

PageRank

505

k-core

STAPL GL running time (various algorithms) on the Graph500

benchmark input on an Android tablet with 1GB RAM, 4 million vertices,

64 million edges.

Multi-Node Performance of Hybrid Approch

Twitter Graph
1600 @ BFS
1400 ® PR
_ 1200 * CC
8
£ 1000
IS}
3
& 800
[0}
g 60
= 400
200
0
1 2 4 8

Nodes

Figure 13. STAPL GL running time for BFS, PageRank (PR) and connected
components (CC) on the Twitter input on multiple nodes of Cray XEG6.

Algorithms Using Hybrid Approach (4GB RAM)

3000
B Twitter 2714
B Friendster

2250

1500 1459

1257
75 584
. 336
BFS

PageRank k-core

Time (sec)

=}

=}

Figure 14. STAPL GL running time (various algorithms) on 4GB PC on the
Twitter graph with 65 million vertices, 1.2 billion edges, and the Friendster
graph with 118 million vertices, 2.6 billion edges.

Running Times Across Platforms, G500-24

1000 770
B STAPLGL

122 B GraphChi

100

Time (sec)

Android (1GB)
2 cores 4 cores

PC (8GB) Cray XE6 (256G)
128 cores

Figure 15. STAPL GL running time across platforms on the Graph500
input graph with 16 million vertices, 256 million edges.

Running Times Across Platforms: Twitter Graph

Time (Seconds)

584.0 4281 B BFS
266.1
I 1628

Qf)

o\o" bQ’ 0\\{9 C)\\{’ bef)

Q
N @ S

Figure 16. STAPL GL running time across platforms on the Twitter input
graph with 65 million vertices, 1.2 billion edges.

VII. RELATED WORK

In this section, we discuss some of the important existing
graph processing systems, as well as theoretical work on
processing out-of-core graphs.

In-memory graph libraries allow fast processing of graphs
in parallel. These can be classified into two categories:
distributed-memory and shared-memory. Shared-memory
graph libraries such as Galois [10] and Multi-Threaded
Graph Library (MTGL) [2] operate on a single node and
are therefore restricted by the amount of RAM on the node,
which severely limits the maximum size of the graph that can
be processed. In contrast, distributed-memory graph libraries
such as the Parallel Boost Graph Library (PBGL) [7],
GraphLab [13] and Giraph can utilize multiple nodes to
process graphs. However, even here, the maximum size
of the graph that can be processed is limited by RAM.
A detailed performance comparison of GraphLab, Giraph
and other popular graph processing systems was shown
in [6]. An in-memory system called GraphX [22] has been
developed to allow multiple stages of graph-processing and
pre- and post-processing to be addressed by a single frame-
work. In their paper, the authors show GraphX to be slower
than dedicated graph processing systems like GraphLab, but
faster for the overall pipeline, which may include non-graph
processing tasks. In Section VI, we compare our approach
with GraphLab, PBGL, Galois and GraphChi.

Disk-based systems such as MapReduce and Hadoop can
also be used to process graphs, however, the overhead of
reading from and writing to disk prompted the development
of more specialized graph libraries like Pregel and Giraph.

Recently, a system based on GraphLab called
GraphChi [12] was developed to allow large graphs
to be processed by a single-node computer by storing
the graph on disk, and using a Parallel Sliding-Window
approach to bring edges in memory to process them. The
parallel sliding-window model and pull model implemented
in GraphChi is not efficient for graph traversals, as loading
the neighborhood of a single vertex requires scanning a
complete memory shard. We provide a comparison of our
theoretical model in Section IV-D, as well as compare our
results with those of GraphChi in Section VI-B. A similar
library, X-Stream [19], uses an edge-centric computational
model, representing the data as a stream of edges. However,
this too is limited to a single shared- memory node, and has
an extra shuffle phase that takes O(| B‘log(P)) extra time
per iteration.

Pearce et al. [17] presented an asynchronous system for
graph traversals for non-dynamic graphs on external and
semi-external memory systems. However, it requires the
vertex values to be in-memory (RAM), while the graph
structure can be stored on disk. Due to this limitation, the
realistic size of graphs is still limited, although to a much
lesser extent than in the case of in-memory graph libraries.

In [15], Vitter proposes a theoretical model for external-
memory graph searching using the technique of blocking.
Their technique optimally uses disk blocks with replication
of vertices on multiple blocks to provide fast performance
for graph searching. However, due to replication, their
algorithm is suited more for read-only graph algorithms,
where the data for the vertex does not change. For supporting
read-write algorithms, they need to update the multiple
vertex replicas by bringing them in memory, the cost of
which is analyzed in the paper. Their model uses a lower-
level blocking and paging strategy than our subgraph-based
paging. Further, their model loads the blocks on demand,
while we use deferred asynchronous updates to allow better
utilization of subgraphs that are already in memory.

VIII. CONCLUSION

We have presented a RAM-disk hybrid approach to pro-
cessing large graphs that can scale from an Android tablet
to off-the-shelf PCs to a large-scale distributed cluster with
16,000+ cores. It uses an asynchronous push model in con-
junction with subgraph-based paging and deferred updates
to utilize available resources effectively, while decoupling
algorithms from the underlying system. Our implementation
extends an in-memory system (STAPL GL) to allow it to pro-
cess out-of-core graphs, and shows improved performance
over existing disk-based graph processing systems, as well
as no penalty for execution when the system has sufficient
RAM to store the entire graph in memory.

IX. ACKNOWLEDGMENTS

We would like to thank Glen Hordemann for help with
our initial design. We would also like to thank our anony-
mous reviewers. This research is supported in part by
NSF awards CCF 0702765, CNS-0551685, CCF-0833199,
CCF-1439145, CCF-1423111, CCF-0830753, IIS-0917266,
by DOE awards DE-AC02-06CH11357, DE-NA0002376,
B575363, by Samsung, IBM, Intel, and by Award KUS-
C1-016-04, made by King Abdullah University of Science
and Technology (KAUST). This research used resources of
the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Dept.
of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] The graph 500 list. http://www.graph500.org, 2013.

[2] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny.
Software and algorithms for graph queries on multithreaded
architectures. In Intl. Par. and Dist. Proc. Symp., 0:495, 2007.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, pp.
107-117, 1998.

[4] A. Buss, Harshvardhan, 1. Papadopoulos, O. Pearce, T. Smith,
G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M. Amato,
and L. Rauchwerger. STAPL: Standard Template Adaptive
Parallel Library. In Proc. Annual Haifa Experimental Systems
Conference (SYSTOR), pp. 1-10, 2010.

[5] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E.
Vengroff, and J. S. Vitter. External-memory graph algorithms.
In Proc. Symp. on Discr. Alg., SODA’9S5, pp. 139-149, 1995.

[6] Y. Guo, M. Biczak, A. Varbanescu, A. Iosup, C. Martella, and
T Willke. How Well Do Graph-Processing Platforms Perform?
An Empirical Performance Evaluation and Analysis. In Infl.
Par. and Dist. Proc. Symp., pp. 395-404, 2014

[7]1 D. Gregor and A. Lumsdaine. The Parallel BGL: A generic
library for distributed graph computations. In Parallel Object-
Oriented Scientific Computing, POOSC, 2005.

[8] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger.
The STAPL Parallel Graph Library. In Lang. and Comp. for
Par. Comp., Lecture Notes in Comp. Sc., pp. 46—60, 2012.

[9] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger.
KLA: A new algorithmic paradigm for parallel graph compu-
tations. In Proc. of Intl. Conf. on Parallel Architectures and
Compilation, PACT’ 14, pp. 27-38, 2014.

[10] M. A. Hassaan, M. Burtscher, and K. Pingali. Ordered
and unordered algorithms for parallel breadth first search. In
Proc. of Intl. Conf. on Parallel Architectures and Compilation
Techniques, PACT’ 10, pp. 539-540, 2010.

[11] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl:
A DSL for easy and efficient graph analysis. In Proc. of
Intl. Conf. on Architectural Support for Prog. Languages and
Operating Syst., ASPLOS’12, pp. 349-362, 2012.

[12] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-
scale Graph Computation On just a PC. In Proc. of Conf. on
Oper. Sys. Design and Impl., OSDI 12, pp. 31-46, 2012.

[13] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed Graphlab: A framework for
machine learning and data mining in the cloud. Proc. of VLDB
Endowment, pp. 716-727, 2012.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale
graph processing. In Proc. Intl. Conf. on Management of data,
SIGMOD’10, pp. 135-146, 2010.

[15] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for
external graph searching. In Proc. Symp. on Princ. of Database
Systems, PODS’93, pp. 222-232, 1993.

[16] L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. 1998.

[17] R. Pearce, M. Gokhale, and N. M. Amato. Multithreaded
asynchronous graph traversal for in-memory and semi-external
memory. In Proc. of Intl. Conf. for High Perf. Comp.,
Networking, Storage and Analysis, SC’10, pp. 1-11, 2010.

[18] M. J. Quinn and N. Deo. Parallel graph algorithms. In ACM
Computing Surveys (CSUR), pp. 319-348, 1984.

[19] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-
centric Graph Processing Using Streaming Partitions. In Proc.
Symp. on Oper. Sys. Princ., SOSP’13, pp. 472488, 2013.

[20] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Papadopoulos,
O. Pearce, T. Smith, N. Thomas, X. Xu, N. Mourad, J. Vu,
M. Bianco, N. M. Amato, and L. Rauchwerger. The STAPL
Parallel Container Framework. In Proc. Symp. on Princ. and
Practice of Par. Prog., PPoPP’11, pp. 235-246, 2011.

[21] L. Valiant. Bridging model for parallel computation. Comm.
ACM, pp. 103-111, 1990.

[22] R. S. Xin, J. E. Gonzalez, M. J. Franklin, I. Stoica. GraphX:
A Resilient Distributed Graph System on Spark. In Wkshp. on
Graph Data Management Expr. and Sys., pp. 1-6, 2013.

