Validation of Full-Domain Massively Parallel Transport Sweep Algorithms

July 3, 2014

2014 American Nuclear Society Winter Meeting and Nuclear Technology Expo
Anaheim, CA, United States
November 9, 2014 through November 13, 2014
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
INTRODUCTION

The scalability of sweep algorithms has been a somewhat disputed topic recently. Some papers have predicted that these algorithms will scale if applied appropriately, while others have claimed that sweep algorithms have limited scalability. We compare the parallel performance models for sweep algorithms to actual computational performance using two distinctly different discrete ordinates transport codes. We have run both codes beyond 1 Million MPI ranks on Lawrence Livermore National Laboratory’s (LLNL) BGQ machines (SEQUOIA and VULCAN).

PARALLEL SWEEPS

The full-domain “sweep,” in which all angular fluxes in a problem are calculated given previous-iterate values only for the volumetric source, forms the foundation for many iterative methods that have desirable properties [1]. Sweep algorithms are parallelized by partitioning the domain D into subdomains and assigning them to parallel tasks. Subdomain boundary dependencies are either provided by boundary conditions or by solutions to upwind neighboring subdomains. Unfortunately, the sweep solution is complicated by the dependency of a given cell on its upstream neighbors. Figure 1 illustrates how sweeps progress from cell to cell. If each subdomain is assigned to only one task, the figure additionally shows how sweeps are computed in parallel and how multiple angle sweeps can be pipelined. Each picture in the figure depicts a stage in the sweep algorithm. We see that, in the beginning of a sweep, some parallel tasks are idle. We call this idle time pipe fill. There is a similar pipe empty idle time at the end of a sweep. To achieve good parallel performance, it is clear that reducing pipe fill and pipe empty time is paramount.

In general, each single group sweep originates from one of the 2^d corners of the spatial domain and completes at the opposite corner (here d is the number of spatial dimensions). If we initiate sweeps from all corners simultaneously our pipe fill time is reduced, but we introduce collisions (shown as gray domains in Figure 2) which must be resolved. A collision occurs when a task has more than one angle that can be swept, and a decision must be made about which to sweep first. Sweep algorithms are therefore composed of two main components: a subdomain decomposition (“partitioning”) and a schedule that defines how the collisions are resolved. The goal of the scheduling algorithm is to resolve wave-front collisions in a way that minimizes total stage count for the full sweep.

The Koch-Baker Alcouffe (KBA) algorithm [2], the first widely adopted parallel sweep algorithm, introduced two ideas that reduce pipe fill and pipe empty time. The KBA spatial domain assigns columns of spatial cells to each parallel task, essentially decomposing d–space into d–1 dimensions so that each task only has 2^(d–1) neighbors. Each column is then broken up into smaller blocks, which we call subdomains. Because each task operates on more than one subdomain, we say the decomposition is overloaded. It is important to note that the standard KBA algorithm begins the sweep at only one of the eight available corners, which effectively eliminates any wave-front collisions in the schedule.

Dorr and Still [3] and Clouse [4] applied a volumetric spatial domain decomposition, which decomposes the spatial domain in all dimensions into cube shaped subdomains. These decompositions allow the sweeps to...
begin at all eight corners. Dorr and Still noted that starting
angles at all eight corners would result in wave-front
collisions, but they did not discuss strategies for resolving
the collisions. Clouse developed a hard-coded schedule
that resolved collisions by using powers-of-2 valued
decomposition in space and delays in the schedule.
Clouse also developed a volumetric type decomposition
with spatial subdomain overloading to increase parallel
efficiency.

Collision resolving schedules as outlined in [6,9,10]
can be applied to both the KBA style and the volumetric
decompositions. Our results will show that these
scheduling rules will lead to predictable, efficient scaling
behavior. For two very different parallel and solution
strategies

ARDRA

ARDRA [5] is a research code developed at LLNL to
study parallel discrete ordinates transport. The code
applies a general framework to domain decompose the
angle, energy and spatial unknowns among available
parallel tasks. Typically, problems run with ARDRA are
only decomposed in space (volumetrically) and energy.
Subdomain overloading is not supported. ARDRA’s
default spatial discretization is diamond difference (finite
difference) with one spatial unknown per mesh cell.

ARDRA solves the discrete form of the transport
problem via source iteration with optional DSA
acceleration. This iterative method has the form: For i = 0,
1, · · · , until convergence, solve:

\[
H\Psi^{i+1} = \Sigma_s L\Psi^i + Q \quad (1)
\]

where \(\Psi\) is the discrete flux, \(H\) is the discrete form of the
streaming plus collision operator \(\Omega \cdot \nabla r\sigma\), \(Q\) is the
discrete source, \(L\) is the discrete moment operator, and
the matrix \(\Sigma_s\) represents the discretized scattering
operator. ARDRA is unusual in that the code stores the
entire angular flux vector and builds the RHS of (1)
before the sweep has occurred. On each subdomain, the
basic sweep algorithm in ARDRA has the form given in
Figure 3. The model of the time to completion for this
algorithm is:

\[
T = GS(T_{\text{task}} + T_{\text{comm}}) + T_{\text{RHS}} = ST + T_{\text{RHS}} \quad (2)
\]

with \(G\) being the number of groups, \(S\) being the number of
sweep stages, \(\bar{T} = GS(T_{\text{task}} + T_{\text{comm}})\) the time to perform
the sweep and \(T_{\text{RHS}}\) the time to calculate the RHS. We
now define parallel efficiency to be:

\[
\varepsilon = \frac{T_{\text{ref}}}{\bar{T}} = \frac{S_{\text{ref}} + T_{\text{RHS}}\bar{T}}{S_{\text{ref}} + T_{\text{RHS}}/\bar{T}}.
\]

while not converged do
 Build RHS = \(L\Sigma_s L\Psi^i + Q\) from \(\Psi^i\)
 for \(g = 1:G\) do
 for \(m = 1:M\) do
 Wait for incoming boundary data
 Choose angle ready to be swept
 for \(z = 1:\text{number spatial cells}\) do
 Solve for \(\Psi^i_{g,m,z}\)
 Communicate out-going \(\Psi^i_{g,m,z}\)
 end for
 end for
 end for
end while

Fig. 3. ARDRA Solution Algorithm

PDT

PDT [6] is a massively parallel discrete ordinates
transport code under development at Texas A&M
University and built on the Standard Template Adaptive
Parallel Library (STAPL) [7] also under development at
Texas A&M University. PDT most often utilizes a hybrid
KBA-Volumetric decomposition, where one dimension
has two-way spatial parallelism and the other two
dimensions subdivide the remaining processors in a
square fashion. Additionally, PDT simultaneously
sweeps from all eight corners using an optimal schedule.
For this paper, PDT uses a piecewise linear discontinuous
finite element spatial disretization with eight spatial
unknowns per cell.

PDT solves the discrete form of the transport
problem via source iteration and variants, including
Krylov methods with and without diffusion
preconditioners. This requires repeated solution of the
sweep equation:

\[
H\Phi^i = \Sigma_s L'\Psi^i + L'Q \quad (4)
\]

where \(\Phi^i = L'\Psi^i\) contains the moments of the angular
flux and \(L'\) is the moments-to-discrete operator. For this,
PDT executes the algorithm in Figure 4. In PDT each
subdomain can be decomposed into “cell- sets”. A sweep
task is the execution of the sweep operator on a cellset for
a set of quadrature directions (an “angleset”) and a set of
energy groups (a “groupset”). The sizes of celsets,
anglesets, and groupsets are determined by aggregation
parameters, which can be user-defined or code-selected at
runtime. The time to completion model for this algorithm
is:
\[T_{\text{sweep}} = N_{\text{stages}} \left(T_{\text{comm}} + T_{\text{wu}} + \sum_{\text{dof}} A_i \left(T_e + A_m \left(T_m + A_g T_g \right) \right) \right) \]

(5)

where \(T_{\text{comm}} \) is the communication time, \(T_{\text{wu}} \) is the time per degree of freedom spent getting into a work function, \(N_{\text{def}} \) is the number of spatial degrees of freedom per cell, \(A_i \) is the number of cells in a cellset, \(T_e \) is the time per degree of freedom spent in the work-function cell loop outside of the angle loop, \(A_m \) is the number of angles in an angleset, \(T_m \) is the time per degree of freedom spent in the work-function angle loop outside of the group loop, \(A_g \) is the number of groups in a groupset, and \(T_g \) is the time per degree of freedom spent in the work-function group loop.

Parallel efficiency is defined as

\[\varepsilon = \frac{T_{\text{sweep, ref}}}{T_{\text{sweep, P}}} \]

(6)

PDT's basic solver algorithm is shown in Figure 4.

```plaintext
while not converged do
  Build \( B = \sum_{i} \Phi_{i} + Q \)
  for \( t = 1 \) to \( N_{\text{task}} \) do
    Obtain next task ID from schedule
    Wait for incoming boundary data
    for \( z = 1 \) to \( \text{cells in cellset} \) do
      Choose next cell from graph
      for \( m = 1 \) to \( \text{angles in angleset} \) do
        for \( g = 1 \) to \( \text{groups in groupset} \) do
          Build \( \text{RHS}_{m,g,z} \) from \( B_{g,z} \) using \( L' \)
          Solve for \( \Psi_{m,g,z}^{i+1} \)
          Accumulate \( \Psi_{m,g,z}^{i+1} \) into \( \Phi_{i+1}^{m,g,z} \)
        end for
      end for
    end for
  end for
  Communicate out-going \( \Psi_{m,g,z}^{i+1} \)
end while
```

Fig. 4. PDT Solution Algorithm

RESULTS

We present results from ARDRA and PDT. Both transport codes have successfully demonstrated the ability to perform the full-domain transport sweep using at least 1 Million MPI ranks.

ARDRA

ARDRA’s scaling problem is based on the Jezebel criticality experiment. We ran this problem in 3D with all vacuum boundary conditions, with 48 energy groups and 3 cases for quadrature sets: S8, S12, and S16. We perform two week scaling studies: one with spatial parallelism only, and the second with a mixture of energy and spatial parallelism. We ran standard power iteration for k-effective stopping the run at 11 iterations for the purpose of throughput. Both of our weak scaling studies start with an initial size of one node of Sequoia, using 16 MPI ranks, with 1 rank per CPU core. Both studies have an initial 48 × 24 × 24 spatial mesh, but decompose the problem differently among the 16 ranks. In our first weak scaling study we decompose the problem into 12 × 12 × 12 cells per rank, with the resulting spatial decomposition of \(P_x = 4 \), \(P_y = 2 \), and \(P_z = 2 \). Our second study uses 16-way on-node energy decomposition, with each rank having the entire 48 × 24 × 24 spatial mesh, but only 3 energy groups, resulting in \(P_x = P_y = P_z = 1 \). Weak scaling is achieved by increasing the number of spatial zones proportional to increasing the processor count. ARDRA’s largest run is at SEQUOIA’s full scale, which is 37.5 trillion unknowns using 1,572,864 MPI ranks, resulting in 71% parallel efficiency using energy and spatial parallelism. Results are shown in Figures 5 and 6.

Fig. 5. ARDRA Weak Scaling (Spatial Parallelism)

Fig. 6. ARDRA Weak Scaling (Spatial and Energy Parallelism)

PDT

PDT’s weak-scaling study was performed using a 3D problem introduced by Zerr and Azmy [8] with a single energy group, S8 level-symmetric quadrature, vacuum boundary conditions, a constant 4096 cells/core, and
spatial parallelism only. The cell and sub-domain sizes remain constant as the number of MPI ranks is increased because the volume of the problem domain is increased in proportion to number of ranks. Figure 7 shows our model prediction and data out to 384K MPI ranks on the SEQUOIA machine. Each case was run using 1 MPI rank/core. We have also demonstrated PDT’s ability to run with 512K and 1M MPI ranks on the VULCAN machine. In these cases, each job was run with 4 MPI ranks/core (one rank per hardware thread). Based on previous experience, the deviation of the data from the model at high rank counts indicates a code issue or inefficiency that needs to be resolved rather than a deficiency in the model itself.

CONCLUSION

These computational results validate the predictions made by the sweep algorithm performance models. Codes based on sweep algorithms and domain decompositions implemented as described here and in the referenced publications will scale to millions of MPI ranks and potentially beyond. The strength of this study is that we demonstrate the validity of our sweep algorithm scaling predictions using two vastly different codes with markedly different domain decomposition and spatial discretization choices. Additional research into algorithms and decomposition strategies, as well as code improvements, will almost certainly result in improved efficiencies.

ACKNOWLEDGEMENTS

Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Part of this work was funded under a collaborative research contract from Lawrence Livermore National Security, LLC. Part of this work was performed under the auspices of the Center for Exascale Radiation Transport at Texas A&M University, which is funded by the Department of Energy, National Nuclear Security Agency under award number DE-NA0002376.

REFERENCES

10. W. D. HAWKINS, T. SMITH, M. P. ADAMS, L. RAUCHWERGER, N. M. AMATO, and M. L. ADAMS,