Dynamic Maneuvers in a 3D Galloping Quadruped Robot

David E. Orin and Darren P. Krasny
Dept. of Electrical and Computer Engineering
The Ohio State University
Dynamic Maneuvers

- Sudden changes in trajectory or speed
- Turning, sudden starts/stops, running jumps
- Initiating, terminating, or interrupting high-speed dynamic locomotion
- Difficulty: Dynamic stability, hybrid control dynamics, hard to observe in nature
Objectives

• Find solutions to dynamic maneuvers
 – High-Speed Turn
 – Running Jump
 – High-speed running gait (Gallop)

• Develop flexible control architecture

• Use multiobjective genetic algorithm (MOGA)
Dynamic Model

- Articulated legs with 3 DOF, nonzero mass
- Asymmetric body mass
- Passive knee compliance
- Compliant contact model
- Static, kinetic friction
Dynamic Simulation

• Dynamic simulation used to compute quadruped robot dynamics

• *DynaMechs* package developed by Scott McMillan – used for recursive dynamics computation
Controller Architecture

- Modular, hierarchical structure
- Flexible: Define cyclic or one-shot behaviors
- Low-level motor primitives defined for each leg
 - Basic movements for running or maneuvering
 - Minimal parameters vs. maximum functionality
Leg Primitive Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE</td>
<td>Allow all joints to move freely.</td>
</tr>
<tr>
<td>TRANSFER</td>
<td>Transfer all joints from initial to desired ending positions over period T using a cubic spline.</td>
</tr>
<tr>
<td>EARLY-RETRACTION</td>
<td>Rotate hip rearwards at desired tangential velocity.</td>
</tr>
<tr>
<td>STANCE-CONTROL</td>
<td>Maintain desired tangential velocity of foot; maintain touchdown ab/ad angle; achieve desired knee energy at max compression.</td>
</tr>
</tbody>
</table>
The Genetic Algorithm

- Genetic algorithm (GA) overview
 - Direct random search of unknown parameter space
 - Parameters encoded in a chromosome
 - Chromosome is altered via genetic operators
 - Algorithm similar to Darwinian evolution
 - Each chromosome considered an individual
 - Group of all individuals considered a population
 - Population changes over several generations via genetic operators
 - Individuals ranked according to their fitness with the best performers able to reproduce
Genetic Operators

• **Selection**: Fittest individuals get to reproduce
 – Elitism used to preserve the best individual(s)
 – Fitness-proportionate (Roulette-wheel) selection
 • Higher fitness \rightarrow better selection probability
 – Multiple copies of fittest individuals in mating pool
Genetic Operators (cont’d)

- **Crossover**: Individual genes are swapped between two parents to form two new children.

- **Mutation**: Genes of each individual are randomly changed with a probability p_m.
For Generation = 1 to N \(N = 250 \) max

1. Evaluate fitness of all \(S \) individuals in the population \(S = 32 \)
2. Select fittest individuals for mating pool
3. Crossover individuals in mating pool with probability \(p_c \) (60%)
4. Mutate each individual’s genes with probability \(p_m \) (5%)
Multiobjective Genetic Algorithm

- Trade-offs among multiple criteria
- Vector-valued fitness
 \[f = [f_1, f_2, \ldots, f_n]^T \]
- Pareto front: set of non-dominated solutions
 - **Domination**: One solution \(\geq \) the other in each position, > in at least one position

Example of a Pareto Front.
The Gallop

- Preferred gait for high-speed quadrupedal locomotion
- Asymmetric footfalls (e.g., LR-RR-LF-RF)
- At least one flight phase (gathered)
- Early retraction of limbs
- Smoother than trot, bound
The Turn

- State machine approach
- Control parameters (12)
 - Four touchdown ab/ad angles
 - Four stance-phase hip velocity target values
 - Four stance-phase knee energy target values
- Evolve a single stride at a time
 - Multiple turning angles
The Turn Fitness Function

- Fitness function: \(f = [f_a, f_{\Delta \alpha}, f_c]^T \)
 - General accuracy
 - Body state variables other than yaw, yaw rate
 - Acceptable ranges for roll, roll rate
 - Turn angle accuracy
 - Achieve the desired change in yaw angle
 - Correctness
 - Correct number of footfalls, correct footfall sequence, no excessive leg spread
Turn Results

Roll vs. change in yaw for the turn.

Conical pendulum model for the turn.

\[\tan \zeta = \frac{\left(v_t \right)^2}{rg} \]
Multiple-Stride Turning

Multi-stride turn in the CCW direction. Multi-stride turn in the CW direction.
The Running Jump

- Same state machine as the turn
- Control parameters (17):
 - hip angles, velocity biases, knee energy
- Evolved in stages
 - Stage 1: Jump
 - Stage 2: Landing
Results

System Time=00:00.001

YAW PITCH ROLL
2x 4x
Summary

• Non-traditional solution approach for complex motions, bio-inspired system
 – Evolutionary optimization vs. traditional approaches
 • No simplifying assumptions required
 • Emergent, unanticipated solutions

• Future of robotics
 – Realization of biological abilities
 – Non-traditional, biologically-inspired solution approaches
Future Work

- Develop dynamic movements for biped
- 26 degree-of-freedom model (DOF) in RobotBuilder
 - 6 DOF legs
 - 4 DOF arms
 - 6 DOF torso