A Proof of Theorem 1

Proof. We prove Theorem 1 by induction. First we define \(\delta_{\text{fail}}(b) : B \mapsto \{0, 1\} \) as an indicator and when \(\delta_{\text{fail}}(b) = 1 \), there are no valid partial conditional plans for belief \(b \) and execution fails.

- Base case \((k = 1)\): Since \(\gamma_1^p = (b, a, O_1^p, \emptyset) \) is valid, for every covered observation \(o \in O_1^p \), \(b' = T_B(b, a, o) \in \text{Dest} \) is the terminal goal belief and thus \(\delta_{\text{fail}}(b') = 0 \). Therefore,

\[
p_{\text{fail}}(\gamma_1^p) = \sum_{o \in O - O_1^p} \Pr(o|b, a) \delta_{\text{fail}}(b') \\
\leq \sum_{o \in O - O_1^p} \Pr(o|b, a) = p_{\text{replan}}(\gamma_1^p)
\]

since \(\delta_{\text{fail}}(b') \leq 1 \) where \(b' = T_B(b, a, o) \) is the successor belief for the uncovered observation \(o \in O - O_1^p \).

- Inductive case \((k > 1)\): Since \(\gamma_k^p = (b, a, O_k^p, \nu_k^p) \) is valid, for every covered observation \(o \in O_k^p \), the corresponding \((k - 1)\)-step partial conditional plan \(\nu_k^p(o) \) is also valid. Assume \(p_{\text{fail}}(\nu_k^p(o)) \leq p_{\text{replan}}(\nu_k^p(o)) \), then

\[
p_{\text{fail}}(\gamma_k^p) = \sum_{o \in O_k^p} \Pr(o|b, a) p_{\text{fail}}(\nu_k^p(o)) + \sum_{o \in O - O_k^p} \Pr(o|b, a) \delta_{\text{fail}}(b') \\
\leq \sum_{o \in O_k^p} \Pr(o|b, a) p_{\text{replan}}(\nu_k^p(o)) + \sum_{o \in O - O_k^p} \Pr(o|b, a) \\
= p_{\text{replan}}(\gamma_k^p)
\]

since \(\delta_{\text{fail}}(b') \leq 1 \) where \(b' = T_B(b, a, o) \) is the successor belief for the uncovered observation \(o \in O - O_k^p \).

Therefore, For any \(k \)-step valid partial conditional plan \(\gamma_k^p = (b, a, O_k^p, \nu_k^p) \),

\[
p_{\text{fail}}(\gamma_k^p) \leq p_{\text{replan}}(\gamma_k^p).
\]

\(\square \)