Problem 41 from Open Problems Project
http://maven.smith.edu/~orourke/TOPP/
Problem

- Sorting $X + Y$
 where $X + Y = \{x + y \mid x \in X, y \in Y\}$ (Minkowski sum)

Ex: $X = \{1, 2, 3\}$, $Y = \{4, 5, 6\}$

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>$1 + 4$</td>
<td>$2 + 4$</td>
<td>$3 + 4$</td>
</tr>
<tr>
<td>Y_2</td>
<td>$1 + 5$</td>
<td>$2 + 5$</td>
<td>$3 + 5$</td>
</tr>
<tr>
<td>Y_3</td>
<td>$1 + 6$</td>
<td>$2 + 6$</td>
<td>$3 + 6$</td>
</tr>
</tbody>
</table>

$\{5, 6, 6, 7, 7, 7, 8, 8, 9\}$
Origin

- Michael Fredman, 1976
- Algorithm found by William Steiger and Ileana Streinu in 1995 with $O(n^2\log n)$ running time with $O(n^2)$ comparisons
- Question: is it $o(n^2\log n)$?
Progress

- Antonio Herrera, 1996
 - Presented problems that are at least as hard as sorting $X + Y$
 - Tracing the intersections of a ray
 - Enumerating distances (K shortest distances)
 - $O(n \log n + k \log n)$
Progress

- Timothy Chan, 2006
 - Necklace alignment (L_1, L_2, L_∞)
Progress

- Timothy Chan, 2006
 - Convolution (max, min, range)
Summary

- **Status**
 - Open
 - $o(n^2 \log n)$

- **Importance**
 - 3SUM ($a + b + c = 0$)
 - Topological Sorting
 - Sperm Sorting