Searching, Merging, & Sorting

Searching

given: sorted array \(X = (x_1, x_2, \ldots, x_n) \) s.t. \(x_i < x_{i+1} \)

and a value \(y \)

find: index \(i \) s.t. \(x_i \leq y < x_{i+1} \) \((x_0 = -\infty, x_{n+1} = +\infty) \)

Sequential binary search solves problem in \(\Theta(\log n) \) time

Can we do it faster w/ 1 < \(p \leq n \) processors? (Parallel Search)

basic idea: do “parallel comparison” by splitting \(X \)

into \(p \) equal pieces and restrict subsequent search in a subarray of size \(\frac{n}{p} \)

\(\Rightarrow \) recursive application finds \(i \) in time \(\approx \log_p n = O\left(\frac{\log n}{\log p}\right) \)

e.g. \(X = \begin{array}{ccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\end{array} \)

\(y = 19 \) \(p = 3 \)

1st iter

\[
\begin{align*}
\ell &= 0, \quad r = 15 \\
&\text{P1 checks } X[\ell] = X[0] = -\infty \\
&\text{P2 checks } X[\ell + \frac{r-\ell}{p}] = X[5] = 10 \\
&\text{P3 checks } X[\ell + 2 \cdot \frac{r-\ell}{p}] = X[10] = 20 \\
&\text{decide } X[5] < y < X[10]
\end{align*}
\]

3rd iter

\[
\begin{align*}
\ell &= 9, \quad r = 10 \\
&\text{now } r-\ell \leq p \text{ check every elt.} \\
&\text{P1 checks } X[\ell] = X[9] = 18 \\
&\text{P2 checks } X[\ell + 1] = X[10] = 20 \\
&\text{decide } i = 9, \text{ i.e. } X[9] \leq y < X[10]
\end{align*}
\]

Note: Implement decide step w/ auxiliary array \(C[1..p] \) [the elt.]

- \(c(j) = \begin{cases} 1 & \text{if } y < X[p_j] \text{ checks} \\ 0 & \text{otherwise} \end{cases} \)

- 01 transition in \(C \) identifies subarray to recurse on

e.g. 11...100...00
Complexity

- $O(\log_p n)$ iterations, i.e. # times divide n by p to get subarray of size 1
- each iteration takes $O(1)$ time
 $\Rightarrow O(\log_p n) = O\left(\frac{\log n}{\log p}\right)$ time total

- each iteration takes $O(p)$ work
 $\Rightarrow O(p \cdot \frac{\log n}{\log p})$ work total

CREW PRAM since all need to access y, l, r

Lowerbound $\Omega(\log n - \log p)$ parallel time EREW PRAM

NOTE: In general, this is not a work optimal algorithm since sequential time is $O(\log n)$
- only work optimal if $p = O(1)$
Merging two sorted sequences

- Before (in Sect. 2.4) we saw $O(\log n)$ time, $O(n)$ work parallel algorithm
 \Rightarrow work optimal

Ranking a short sequence in a long sorted sequence

$X = (x_1, x_2, x_3, \ldots, x_n)$ s.t. $x_i < x_{i+1}$
$Y = (y_1, y_2, \ldots, y_m)$ not necessarily sorted
$m = O(n^s)$ $0 < s < 1$

- Use parallel search algorithm to rank each element of Y in X separately
 - set $p = \lceil \frac{m}{\log n} \rceil = \Omega(n^{1-s})$ for each element
 - Can rank each element of Y in X
 - time $O(\frac{\log n}{\log p}) = O(\frac{\log n}{\log n^{1-s}}) = O(\frac{1}{1-s} \frac{\log n}{\log n}) = O(1)$
 - work $O(p \cdot \frac{\log n}{\log p}) = O(p) = O(\frac{n}{m})$
 - do all rankings of elts of Y in X concurrently
 - time $O(1)$
 - work $O(m \cdot \frac{n}{m}) = O(n)$

CREW PRAM (needed for parallel search)
A Fast Merging Algorithm

\[A = (a_1, a_2, \ldots, a_n) \quad a_i < a_{i+1} \quad \text{(assume all els distinct)} \]
\[B = (b_1, b_2, \ldots, b_m) \quad b_i < b_{i+1} \]

Want \(\text{rank}(B; A) \) i.e. rank each elt \(b_i \) in \(A \)

Use partitioning strategy (2.4 in text)

1. rank \(\sqrt{m} \) els of \(B \) in \(A \) by parallel search
2. partition \(A \) into blocks s.t. each block of \(A \)
fits between two els of \(B \) (at most \(\sqrt{m} \) els apart)
 \(\Rightarrow \) problem reduced to ranking blocks of \(B \) in blocks of \(A \)
3. Stop recursion when \(m < 4 \) (rank \(m \) els w/p=n by parallel search)

Complexity

- **CREW PRAM b/c Parallel Search needs it**
 - ranking \(\sqrt{m} \) els in \(n \) els
 \[p = \sqrt{n} \text{ for each call to parallel search} \]
 \[O(\log n / \log \sqrt{m}) = O(1) \text{ time, } O(p \cdot \log^{\frac{\log n}{\log \sqrt{m}}}) = O(p) = O(\sqrt{m}) \text{ work} \]
 \(\Rightarrow \) Total time \(O(1) \), Total work \(O(\sqrt{m} \cdot \sqrt{n}) = O(m + n) \)
 - # recursive calls
 each time size of \(B \) reduced by \(\sqrt{m_i} \), \(M_i = \text{current size} \)
 \(\Rightarrow O(\log \log n) \) recursive calls

 Total Time = \(O(\log \log n) \) (each iter takes \(O(1) \) time)
 Total Work = \(O((n+m) \log \log n) \) (each iter takes \(O(nm) \) work)

NOTE: As before can make work optimal w/ accel. cascading.
Make smaller prob. of size \(\frac{n}{\log \log n} \) w/ slow work optimal algo then apply fast non-optimal algo
Sorting

Two algorithms that use the merge-sort strategy
- straightforward parallelization of sequential merge-sort
- Cole's parallel merge sort (pipelined divide-and-conquer)

Simple Parallel Merge Sort

\[
\text{MergeSort (A)} \\
T_1 := \text{MergeSort (1st half A)} \} \text{ in parallel} \\
T_2 := \text{MergeSort (2nd half A)} \} \\
T_3 := \text{Merge (T1 + T2)} \} \text{ use parallel merging algorithm} \\
\text{end At MergeSort */} \\
\]

Complexity: CREW PRAM (merging)
\[
T(n) = T(\frac{n}{2}) + M(n) = T(\frac{n}{2}) + O(\log \log n) = O(\log n \log \log n) \\
W(n) = 2 \cdot W(\frac{n}{2}) + O(n) = O(n \log n)
\]

* So a very simple work-optimal algorithm

We can use Cole's Parallel MergeSort to reduce time to \(O(\log n)\) while keeping work \(O(n \log n)\)
• in practice wouldn't want to implement Cole's algorithm
• it is an important theoretical result and introduces new pipe-lined technique
Cole's Parallel Merge Sort
- not in complete detail but it's important result so we want to give you flavor.
- In practice it's too complicated to yield good performance

Build binary tree on input (elts at leaves)
- Internal node \(v \) computes sorted list \(L[v] \) of input elts at leaves of subtree rooted at \(v \)

\[
L[-8, -7, -5, 3, 6, 12, 28, 51]
\]

\[
\begin{align*}
& L[-5, 12] \\
& L[-7, 51] \\
& L[6, 28] \\
& L[-8, 3]
\end{align*}
\]

Simple Parallel Merge Sort
- Forward (bottom to top) traversal of tree
- Completely compute \(L[v] \) at level \(i \) before going up to next

Cole's Parallel Merge Sort (pipelined or cascading merge sort)
- Forward traversal
- Compute \(L[v] \) over a number of stages
 - At stage \(s \), \(L_s[v] \) is an approximation of \(L[v] \) that is improved at next stage \(s+1 \)
 - A sample (every \(c \)th elt) of \(L_s[v] \) is propagated upward to be used to improve approximations above

def: Altitude \(alt(v) = h(T) - level(v) \) (\(alt(root) = h(T) \))
initialize: $L_o[v] = \emptyset$ if v internal
$\quad L_o[v] =$ value at leaf v if v is leaf

The alg. updates $L[v]$ at stages $alt(v) \leq s \leq 3 \cdot alt(v)$
- after stage $3 \cdot alt(v)$ $L[v]$ is full or finished

\Rightarrow algorithm runs in $3 \cdot h(T)$ stages
 which is $O(\log n)$ if each stage runs in $O(1)$ time

At stage s:

for all active nodes v pardo | $\forall alt(v) \leq s \leq 3 \cdot alt(v)$

1. let $u + w$ be children of v
 $L'_{sv}[u] =$ Sample ($L_s[u]$)
 $L'_{sv}[w] =$ Sample ($L_s[w]$)

2. Merge $L'_{sv}[u]$ and $L'_{sv}[w]$ into sorted list $L_{sv}[v]$

end pardo

\[\text{every } 4^{\text{th}} \text{ elt of } L_s \quad \text{ every other elt of } L_s \]

where $\text{Sample} (L_s[x]) = \begin{cases}
\text{Sample}_y (L_s[x]) & \text{if } s \leq 3 \cdot \text{alt}(x) \\
\text{Sample}_2 (L_s[x]) & \text{if } s = 3 \cdot \text{alt}(x) + 1 \\
\text{Sample}_1 (L_s[x]) & \text{if } s = 3 \cdot \text{alt}(x) + 2 \\
\end{cases} \\
\text{every elt of } L_s$

- Correctness not difficult to see
- More complicated to see $O(1)$ time per stage
 - depends on relation between samples + ranks in two consecutive stages
 - by maintaining ranking info between kids/parents can do merging in step 2 in $O(1)$ time
Randomized Sorting Algorithms (Ch. 9 Sect 6)

random sampling - select random subset of a set of elts
sampling w/ replacement - always select elts from entire set

Randomized Quicksort (elts assumed distinct)
- two-way partitioning, very simple divide-and-conquer alg

RQSort(A)
1. if |A| < c
 then sort A sequentially + return
2. x := random elt of A
3. for 1 ≤ i ≤ n pardo
 if A(i) < x
 then mark(i) := 1
 else mark(i) := 0
 end for pardo
4. Rearrange A s.t. elts marked w/ 1 at front,
 then x, then elts marked w/ 0
 * let k be index of x in rearranged A
5. Recursively sort in parallel A(1:k-1) + A(k+1:n)
end /* RQSort */

Complexity
iterations: worst-case O(n), average-case=best-case = O(\log n)
Steps 1-3: O(i) time, O(n) work
Step 4: prefix sums/compaction O(\log n) time, O(n) work
Total Time: O(\log^2 n)
Total Work: O(n \log n) EREW PRAM (duplicate x in O(\log n) time)
Randomized Sample Sort
- k-way divide-and-conquer

RSSort(A)
1. if |A| ≤ 30
 then sort A sequentially + return
2. choose a sample S of k random elts of A
3. Sort the elts in S = (s₁, s₂, ..., sₖ) s.t. sᵢ < sᵢ₊₁
4. Rearrange elts of A into k+1 buckets Bᵢ, 1 ≤ i ≤ k+1
 s.t. elts x ∈ Bᵢ satisfy sᵢ₋₁ < x ≤ sᵢ (s₀ = -∞, sₖ₊₁ = +∞)
5. Recursively sort elts in Bᵢ
end /* RRSort */

Analyze Complexity w/ k = √n

Claim: Each iteration takes O(log n) time, O(n log n) work w/ |Bᵢ| = n

Step 1: O(1) time, O(1) work

Step 2: O(1) time, O(√n) = O(k) work

Step 3: First, how to sort (brute force is sufficient)
(i) compare all O(k²) = O(√n²) = O(n) pairs of elts of S
(ii) store results in k × k (√n × √n) lookup table T
(iii) compute rank of each elt of S by a prefix sum computation on each row of T

Now complexity...
(i) + (ii): O(1) time, O(k²) = O(√n²) = O(n) work
(iii): O(log k) = O(log √n) = O(log n) time, O(k) = O(√n) work
 for each row of T, k = √n rows total
⇒ Total time O(log n)
Total work O(√n · √n) = O(n)
Step 4: Two Stages

Stage 1: Locate bucket for each elt of A by binary search on sorted S
- \(O(\log n)\) time, \(O(n\log n)\) work

Stage 2: Rearrange els so those in bucket 1 1st, 2 2nd, etc.
- Note: this is integer sorting where n ints belong to range \([1, 2, \ldots, \sqrt{n}]\)
- Briefly, build binary tree on input els (ex. 9.28 in text)
 - Each node has lists of els in each bucket
 - As proceed up tree, concatenate list from kids &
- Takes \(O(\log n)\) time, \(O(n\log n)\) work

\[\frac{1}{4}\times\text{claim x/}\]

Iterations
- Expected \# els in each bucket is \(\sqrt{n} = n^{1/2}\) after \(I\) iter
- At \(i^{th}\) iteration \# els expected in bucket is \(n^{(\frac{1}{2})^i}\)
\[\Rightarrow\text{expected \# iters } O(\log \log n)\]

Total Time (expected)
- Time of \(i^{th}\) iteration = \(O(\log (n^{(\frac{1}{2})^i}))\)
- Total time = \(O(\sum \log n^{(\frac{1}{2})^i}) = O(\sum (\frac{1}{2})^i \log n) = O(\log n \sum (\frac{1}{2})^i) = O(\log n)\)

Total Work (expected)
- Work of \(i^{th}\) iteration = \(O(n^{(\frac{1}{2})^i} \log n^{(\frac{1}{2})^i})\)
- Total work = \(O(\sum n^{(\frac{1}{2})^i} \log n^{(\frac{1}{2})^i}) = O(n \log n)\)

Note: The text shows these bounds hold w/ high probability, i.e., probability \(1 - n^{-c}\), which is much greater than expected probability of \(\frac{1}{2}\).