1. **Exercise 21.3-1 (p. 509)**

 Do Exercise 21.2-2 using a disjoint-set forest with the weighted union and path compression.

 Note Exercise 21.2-2 contains the following operations and it asks you to show the data structure that results and answers returned by the FIND-SET operations. In Exercise 21.3-1, You should show them when a disjoint-set forest with the weighted union and path compression is used.

   ```
   for i ← 1 to 16
   do MAKE-SET(x_i)
   for i ← 1 to 15 by 2
   do UNION(x_i, x_i+1)
   for i ← 1 to 13 by 4
   do UNION(x_i, x_i+2)
   UNION(x_1, x_5)
   UNION(x_11, x_13)
   UNION(x_1, x_10)
   FIND-SET(x_2)
   FIND-SET(x_9)
   ```

 Exercise 23.2-2 (p. 573)

 Suppose that the graph \(G = (V, E) \) is represented as an adjacency matrix. Give a simple implementation of Prim’s algorithm for this case that runs in \(O(V^2) \) time.

 Exercise 23.2-8 (p. 574)

 Professor Toole proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph \(G = (V, E) \), partition the set \(V \) of vertices into two sets \(V_1 \) and \(V_2 \) such that \(|V_1| \) and \(|V_2| \) defer by at most 1. Let \(E_1 \) be the set of edges that are incident only on vertices in \(V_1 \), and let \(E_2 \) be the set of edges that are incident only on vertices in \(V_2 \). Recursively solve a minimum-spanning-tree problem on each of the two subgraphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \). Finally select the minimum-weight edge in \(E \) that crosses the cut \((V_1, V_2) \), and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

 Either argue that the algorithm correctly computes a minimum spanning tree of \(G \), or provide an example for which the algorithm fails.

 Problem 23-3 (p. 577) A bottleneck spanning tree \(T \) of an undirected graph \(G \) is a spanning tree of \(G \) whose largest edge weight is minimum over all spanning trees of \(G \). We say that the value of the bottleneck spanning tree is the weight of the maximum-weight edge in \(T \).

 (a) Argue that a minimum spanning tree is a bottleneck spanning tree.
Part (a) shows that finding a bottleneck spanning tree is no harder than finding a minimum spanning tree. In the remaining parts, we will show that one can be found in linear time.

(b) Give a linear-time algorithm that given a graph G and an integer b, determines whether the value of the bottleneck spanning tree is at most b.

(c) Use your algorithm for part (b) as a subroutine in a linear-time algorithm for the bottleneck-spanning-tree problem. (Hint: You may want to use a subroutine that contracts sets of edges, as in the MST-REDUCE procedure described in Problem 23-2).