
Stateless Model Checking Concurrent Programs
with Maximal Causality Reduction

Jeff Huang
Texas A&M University, USA

jeff@cse.tamu.edu

Abstract
We present maximal causality reduction (MCR), a new technique
for stateless model checking. MCR systematically explores the
state-space of concurrent programs with a provably minimal num-
ber of executions. Each execution corresponds to a distinct max-
imal causal model extracted from a given execution trace, which
captures the largest possible set of causally equivalent executions.
Moreover, MCR is embarrassingly parallel by shifting the run-
time exploration cost to offline analysis. We have designed and im-
plemented MCR using a constraint-based approach and compared
with iterative context bounding (ICB) and dynamic partial order
reduction (DPOR) on both benchmarks and real-world programs.
MCR reduces the number of executions explored by ICB and
ICB+DPOR by orders of magnitude, and significantly improves
the scalability, efficiency, and effectiveness of the state-of-the-art
for both state-space exploration and bug finding. In our experi-
ments, MCR also revealed several new data races and null pointer
dereference errors in frequently studied real-world programs.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Software/Program Verification—Model checking

General Terms Algorithms, Design, Theory

Keywords Maximal Causality Reduction, Model Checking

1. Introduction
A fundamental challenge in concurrent program verification is
thread interleaving explosion: the number of possible interleav-
ings grows exponentially with the number of threads and the length
of program execution. A general idea to alleviate this problem
is to ignore redundant interleavings that produce equivalent pro-
gram states. In stateless model checking, techniques systemati-
cally explore the state-space of a given program by driving its
executions via a special scheduler, which makes scheduling deci-
sions to explore only non-redundant interleavings. Several stateless
model checkers have been developed, such as VeriSoft [12] and
CHESS [25], and proven valuable in practice for finding errors.

A crucial task in stateless model checking is how to identify
redundant interleavings. The classical approach is partial order re-
duction (POR) [5, 10, 11], based on the observation that an inter-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00

leaving is redundant if it can be obtained from another by swap-
ping adjacent non-conflicting events from different threads. All in-
terleavings can be categorized into a number of distinct equiva-
lent classes called Mazurkiewicz traces [1]. POR explores one in-
terleaving in each Mazurkiewicz trace and is proven sufficient for
checking most interesting safety properties, such as absence of as-
sertion violations and race conditions.

A major limiting factor of POR is that the Mazurkiewicz trace
is characterized based on strict event dependencies with respect to
the happens-before relation [20]. For shared memory systems with
locks and shared variables, the happens-before relation enforces de-
pendence on all the lock acquire/release and conflicting read/write
events. This misses many opportunities for identifying redundant
interleavings. Consider three threads, p, q and r , performing read
and write accesses to a shared variable x:

p: write x; q: write x; r : read x;

According to happens-before, all the three accesses are de-
pendent. Hence the six interleavings {p.q .r , p.r .q , q .p.r , q .r .p,
r .p.q , r .q .p} belong to six different Mazurkiewicz traces and POR
must explore all of them. From the surface, this is needed as none of
them are redundant. However, if we take a closer look, only half of
them are necessary to explore. In fact, p.q .r is equivalent to q .r .p,
p.r .q to q .p.r , and r .q .p to r .q .p. The reason is that r is the only
thread which reads x, of which the returned value may affect the
to-be-verified property. If the two writes by p and q do not result in
a different value read by r , then their order is redundant. Even bet-
ter, if both of the two writes produce the same value, then p.q .r is
also equivalent to p.r .q , resulting in only two interleavings (p.q .r
and r .p.q) to explore.

Our first contribution in this work is to characterize the Mazur-
kiewicz trace based on a new criterion: maximal causality. Concep-
tually, maximal causality characterizes the largest possible set of
equivalent interleavings in each Mazurkiewicz trace by taking the
value of reads and writes into consideration. When applied in state-
less model checking, it minimizes the number of interleavings that
must be explored. In other words, it enables exploring the entire
state-space of a concurrent program with respect to a given input
with a minimal number of executions.

The theoretical model of maximal causality was proposed
in [16, 30], establishing the foundation that for any interleav-
ing s, there exists a sound and maximal set of interleavings,
MaxCausal(s), which comprises precisely the interleavings that
can be generated by all programs that can generate s. The model
is well-suited for stateless model checking as it is based on purely
dynamic information (a.k.a. trace) emitted in the execution, such
as what data and value an event reads from or writes to by which
thread, with no assumption about the program code or the data/-
control flow between events.

As illustrated in Figure 1, our approach integrates stateless
model checking with maximal causality in a closed loop. Whenever
an interleaving is explored, the maximal causality engine takes the
corresponding trace as input and generates a set of new interleav-
ings (if there exists any), called seed interleavings, and feeds them
back to the model checker to continue exploring. Each seed inter-
leaving is a feasible interleaving in MaxCausal(s). However, exe-
cuting the program following a seed interleaving will reach a new
program state (because a read is forced to see a different value),
and extending it with any new event will produce a new interleav-
ing, which is maximal-causally distinct from any other explored
interleavings. In other words, for each such new interleaving s′,
MaxCausal(s′) accounts for a unique subspace of all interleavings.
The whole process is systematic: it starts with an empty seed inter-
leaving and stops when all seed interleavings are explored and no
new can be generated, meaning that the entire state-space has been
covered.

We call the above process Maximal Causality Reduction (MCR).
There are two main technical challenges in achieving MCR for
stateless model checking:

1. How to realize the maximal causal model (MCM)? Simply
enumerating all possible interleavings [30] is intractable and
has never been implemented in practice.

2. How to generate all the seed interleavings and ensure that none
of them are redundant and none is missed?

We present an algorithm that encodes MCM as a series of
quantifier-free first-order logic formulas, Φ, whose satisfiability
can be decided by an off-the-shelf SMT solver. The solutions
of Φ conjuncted with a property φ represent the interleavings in
MaxCausal(s) that satisfy φ. To generate seed interleavings, we
leverage Φ and conjunct it with additional state-change constraints
(i.e., enforce a read to return a different value), such that the solu-
tion to each new formula represents a seed interleaving. Although
our algorithm requires solving constraints which may be expen-
sive, this task can be done completely offline. As SMT solvers
such as Z3 [7] and Yices [8] are becoming increasingly powerful,
this constraint-based approach scales well in practice.

Moreover, separating the generation of seed interleaving (which
is offline) from online exploration makes MCR easily paralleliz-
able, with at least two levels of parallelism. First, the online ex-
ploration with different seed interleavings is embarrassingly paral-
lel. Second, the tasks of generating different seed interleavings are
independent of each other and thus can be performed in parallel.
Comparatively, conventional model checking with POR is hard to
parallelize, because the exploration of new interleavings is online
and is dependent on previously explored interleavings.

Orthogonal to POR, another effective approach for stateless
model checking is iterative context bounding (ICB) [23]. ICB bounds
thread preemptions in the explored interleavings, which reduces
the explored interleaving space to be polynomial in the execution
length. ICB can be combined with dynamic partial order reduc-
tion (DPOR) [10] to further improve the effectiveness [6, 22, 31].
Differently, ICB does not reduce redundant interleavings and does
not provide full state-space coverage. ICB is neither amenable to
massive parallelization, because in ICB each iteration relies on the
completion of previous iterations.

We have implemented MCR in a stateless model checker for
Java and compared it with both ICB and ICB+DPOR on pop-
ular benchmarks and two real-world applications, Jigsaw and
Weblech. Our evaluation results show that MCR reduces the
number of explored interleavings by ICB and ICB+DPOR by or-
ders of magnitude, and it improves the scalability, efficiency, and
effectiveness over them significantly for both state-space explo-
ration and bug finding in terms of data races and null pointer deref-

Stateless'Model'Checker'

Scheduler)

New)
interleaving)

Maximal)causality)envelope)

…)
…)
…)
…)

Program)

Seed)interleaving)

Maximal'Causality'Engine'
New$seed$
interleavings$

Trace)

Figure 1: Technical overview of maximal causality reduction

erences (NPE). We have also designed a parallel MCR algorithm
and compared it with the other techniques on a 32-core machine.
Our parallel algorithm achieves a much higher scalability and de-
tects many more data races and NPEs. In our experiments with
Jigsaw and Weblech, MCR also found three new data races and
two new NPEs.

We highlight our contributions as follows:
• We present maximal causality reduction which minimizes the

number of explored executions for stateless model checking
concurrent programs.

• We present a constraint-based approach to realize maximal
causality reduction. This approach separates interleaving gen-
eration from exploration, shifting the runtime exploration to
embarrassingly parallel offline analysis.

• We evaluate maximal causality reduction using both popular
benchmarks and real programs and show that it significantly
advances the state-of-the-art techniques.

2. Overview
We first provide an artificial example to illustrate the advantage of
MCR, and then outline our approach.

2.1 Motivating Example
The example program in Figure 2 starts three concurrent threads
T1, T2 and T3, each loops twice and accesses two shared variables
x and y and a lock l. There is an error at line 13 that will be
triggered in T3 if the two conditions ¬ x > 1 and y == 3
are both satisfied. The error is hard to find, however, because it
is hidden deeply with complex thread interactions. For condition
¬ to be true, line 2 must be executed between line 7 and line
8; for to be true, line 9 must be executed after line 14. In
addition, lines 11 and 12 must be executed after lines 10 and
9, respectively, and before the values of x and y being changed
by any other writes. For the error to occur, each thread has to
loop twice following the interleaving T2-T2-T2-T1-. . . -T1-T3-
T3 shown at the bottom of Figure 2. However, consider all the
possible interleavings in this program, the total number is more
than 10 million (by approximation [21])! This poses significant
challenges for existing techniques to find the error.

We ran this program with a stateless model checker devel-
oped in this work with various algorithms implemented. The ba-
sic mode (depth-first-search until all interleavings are covered) ex-

T1

 lock(l)
 x=1
 y=1
 unlock(l);

1:
2:
3:
4:

T2

 lock(l)
 x=0
 unlock(l);
 if(x>0){
 y++
 x=2
 }

T3

 if(x>1){
 if(y==3){
 Error
 else
 y=2
 }
 }

loop twice: loop twice: loop twice:
5:
6:
7:
8:
9:
10:

11:
12:
13:

14:
: lock/unlock

/ : read/write

/

Error-triggering interleaving:

initially x=y=0

loop N times

Event at line i in loop j

Figure 2: Example. The error-trigger interleaving and the corresponding trace are shown at the bottom. Each event is annotated with its line
number and loop iteration number. For example, R2

8 refers to the read event at line 8 in the second loop iteration.

10#

100#

1000#

10000#

100000#

1000000#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

ICB#

ICB+DPOR#

MCR#

N#

#Execu<ons#

1"

10"

100"

1000"

0" 2" 4" 6" 8" 10"

Time"(second)"

N"

Algorithms+ N=1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+

Number'of'
Execu-ons'

ICB+ 77322' 104115' 135721' 172488' 214764' 262897' 317235' 378126' 445918' 520959'

ICB
+DPOR+ 3782' 5416' 8702' 14714' 24898' 41126' 65750' 101656' 152318' 221852'

MCR+ 46' 49' 50' 50' 50' 50' 50' 50' 50' 50'

Time'
(Second)'

ICB+ 20' 27' 36' 49' 62' 81' 100' 124' 151' 183'

ICB
+DPOR+ 3' 3' 4' 6' 10' 16' 26' 41' 63' 93'

MCR+ 2' 2' 2' 3' 3' 3' 3' 3' 3' 4'

Figure 3: Comparison between different algorithms for finding the error in Figure 2 with N from 1 to 10.

plored 3,293,931 interleavings before it timed out in one hour.
The ICB mode (which implements the same ICB algorithm as
that in CHESS [25], which is usually the most efficient method
for finding concurrency bugs) took 77,322 executions until it hit
the error after exploring for 20 seconds. ICB can be combined
with DPOR [10] to further reduce the explored executions. We ran
the ICB+DPOR mode and it still took 3782 executions before it
found the error in 3 seconds. Comparatively, our approach with
MCR took only 46 executions and found the error in 2 seconds,
reducing the number of executions explored by ICB+DPOR by
two orders of magnitude, and ICB by three orders of magnitude,
because most of the executions are causally equivalent.

To make the example more interesting, we let line 3 (which sets
y to 1 repeatedly) loop for N times and compare the performance of
different algorithms as N increases. Since every execution of line 3
corresponds to a new write event on y , the interleaving space of the
program increases exponentially with N . For each larger N , both

ICB and DPOR have to explore significantly more interleavings
before they can find the error. However, MCR does not, because
the repeated write events at line 3 only create redundant interleav-
ings which are captured by maximal causality. Figure 3 shows the
comparison results with N from 1 to 10. Notice that the vertical axis
is on logarithmic scale. For both ICB and ICB+DPOR, the number
of executions and the total time for them to find the error both in-
crease drastically as N increases. ICB+DPOR even increases faster
than ICB alone, because DPOR is not able to reduce the redundant
interleavings caused by the writes at line 3. However, MCR is al-
most insensitive to N . It becomes stable at 50 executions when N
is larger than 3, and the total time only increases negligibly.

2.2 Maximal Causality Reduction
Conceptually, MCR differs from existing techniques by covering
a set of interleavings for each single execution. Underpinned by
the maximal causal model (MCM), MCR is able to analyze an

exponential and provably maximal number of interleavings derived
from each single execution trace.

Algorithm 1 MaxCausalExplore(S)
1: Input: S - a set of seed interleavings, initially {s0};
2: s0 - an empty interleaving.
3: for s ∈ S do
4: τ← Execute(s);
5: Φ← ConstructMaxCausalModel(τ);
6: PropertyCheck(Φ);
7: S′ ← GenerateSeedInterleavings(τ, Φ);
8: MaxCausalExplore(S′);

Algorithm 1 outlines our basic algorithm. It works in an iterative
manner. Each iteration explores one interleaving online, and checks
a maximally causal set of derived interleavings offline. In addition,
each iteration may generate more seed interleavings, which will be
used to drive other iterations. More specifically, each iteration has
three steps:

Online exploring and tracing for one execution This step ex-
ecutes the program, first following a seed interleaving (initially
empty) and continuing (with arbitrary interleaving) until the end of
execution. In addition to executing the program, this step also col-
lects a trace that includes the necessary information for construct-
ing the MCM. Note that the trace collected here is not required to
hit the error. We will present the details of MCM in the next section.

Offline checking for maximal causal interleavings This step
constructs a MCM and checks properties offline. Each MCM con-
tains a set of interleavings, MaxCausal(s), which is a unique and
maximal set of feasible interleavings inferred from the trace cor-
responding to the interleaving s. To check properties, we encode
MaxCausal(s) as a formula Φ over a set of order variables, such
that any solution of the formula corresponds to a legal interleaving
represented by a topological sort of the order variables. By encod-
ing the properties as additional constraints and solving their con-
junction with Φ, we can determine if a property holds or not for all
the interleavings in MaxCausal(s).

Generating seed interleavings This step generates seed inter-
leavings which will be used in the first step to produce new in-
terleavings. For each new interleaving s, MaxCausal(s) covers a
unique subspace of interleavings. This step is critical because to
minimize the number of executions, we must ensure no two sub-
spaces overlap and all subspaces together cover the entire inter-
leaving space.

Our basic idea for generating the seed interleavings is to enforce
reads in the trace to return different values allowed by the MCM.
The rationale is that every seed interleaving must drive the program
to reach a new state. For example, suppose in our example we get
a trace in which R2

9 reads value 1 on x and W 1
14 writes value 2. We

will try to force R2
9 to read a different value, 2 in this case, written

by W 1
14. If there exists an interleaving in MaxCausal(s) that can

satisfy this condition, then the interleaving will be generated as a
seed interleaving. In our example, we will generate a seed interleav-
ing in which W 1

14 happens before R2
9 and R2

9 reads 2 on y . Once this
interleaving is enforced at runtime, the program will reach a new
state and produce a new trace by continuing execution.

Our approach will terminate when all seed interleavings are
explored and no new seed interleaving can be generated, indicating
that the entire state-space has been covered.

Example Figure 4 illustrates our seed interleaving generation
algorithm for our example in Figure 2. s0 is the seed interleaving
of the initial trace. In the first iteration, we generate four seed

s0

s1 s2 s3 s4

s1.1 s1.2 s1.3
...

... ... s4.1 s4.2 s4.3

s1.1.2.1 s1.1.2.2

... ...

s4.3.1.1 s4.3.1.2... ...

S0
1 1 0 0

x y

1 1 0 0 2 2 1 1 2 3 2 2

empty

S1.1.2.2

S1 1 1 0 0 2

1 1 2

...

Figure 4: A hierarchical view of seed interleaving generation

interleavings {s1, s2, s3, s4}, which enforce the four reads R1
8 ,

R2
8 R1

11, R2
11, respectively, to read value 1 (instead of 0 in the initial

trace). In the second iteration, we continue to work on the traces
corresponding to si (i=1,2,3,4), and generate s1.1, s1.2, . . . ,
s2.1, s2.2, etc. All interleavings form a hierarchy, with each
child interleaving enforcing a different read value. Again, each new
interleaving may produce a trace containing new read events and/or
write values, which can generate new children interleavings. For
example, our approach will eventually generate the interleaving
s1.1.2.2, which enforces R2

12 to read 3 and triggers the error
at line 13.

3. Approach
In this section, we first present MCM and how we encode it. We
then present our seed interleaving generation algorithm in detail.
Our approach shifts the reasoning of redundant interleavings to
offline constraint solving. The resulting process can be parallelized
easily, which in theory scales MCR to arbitrary large programs
if there are sufficient cores. We present our parallel algorithm in
Section 3.5.

3.1 Maximal Causal Model
Multithreaded programs P can be abstracted as the prefix-closed
sets of finite traces that they can produce when completely or
partially executed, called P -feasible traces. A trace is abstracted as
a sequence of events. Events are operations performed by threads
on concurrent objects. In the original MCM [30], only reads/writes
and mutex events are considered, as all the other events can be
built as abstractions upon them. We consider the following common
event types in this work:

• begin(t)/end(t): the first/last event of thread t ;
• read(t , x, v)/write(t , x, v): read/write x with value v ;
• lock(t , l)/unlock(t , l): acquire/release a lock l ;
• fork(t , t ′): fork a new thread t ′;
• join(t , t ′): block until thread t ′ terminates;

The sets of P -feasible traces must obey two basic consistency
axioms: prefix closedness and local determinism. The former says
that the prefixes of a P -feasible trace are also P -feasible. The latter
says that each thread has a deterministic behavior, that is, only the
previous events of a thread (and not other events of other threads)
determine the next event of the thread, although if that event is a
read then it is allowed to get its value from the latest write. These
two axioms allow us to associate a causal model feasible(τ) to any
consistent trace τ, which comprises precisely the traces that can be
generated by any program that can generate τ.

It is shown in [16, 30] that feasible(τ) is both sound and maxi-
mal: any program which can generate τ can also generate all traces
in feasible(τ), and for any trace τ′ not in feasible(τ) there exists
a program generating τ which cannot generate τ′. Comparatively,
conventional happens-before models consisting of all the legal in-
terleavings of τ and their prefixes are sound, but not maximal, in-
dicating that POR is not optimal for reducing redundant interleav-
ings. We refer the readers to [16, 30] for the proofs of soundness
and maximality,

Due to the complexity of MCM, however, it is hard to imple-
ment in practice. In our prior work [16], we proposed to use con-
straints and realized a specialized MCM for race detection. Build-
ing upon [16], in this work we first realize the general MCM by
encoding it as a formula Φ with first-order logical constraints. We
next describe our constraint encoding in detail.

3.2 Constraint Encoding of Maximal Causal Model
From a high level view, Φ contains only variables of the form Oe
corresponding to events e, which denote the order of the events
in a trace in feasible(τ). Φ is constructed by a conjunction of two
subformulas: Φ ≡ Φsync ∧ Φrw, where Φsync denotes the inter-
thread order constraints determined by synchronization events, and
Φrw the data-validity constraints over read and write events. Φsync
can be further decomposed as conjunction of the must-happen-
before and the lock-mutual-exclusion constraints.

Must-happen-before constraints (Φmhb) The must-happen-before
(MHB) constraints reflect a subset of the classical happens-before
relation, ensuring a minimal set of ordering relations that events
in any feasible interleaving must obey. Specifically, MHB requires
that (1) the total orders of the events in each thread are always the
same; (2) a begin event can happen only after the thread is forked
by another thread; (3) a join event can happen only after the end
event of the joined thread. Clearly MHB yields a partial order over
the events of τ which must be respected by any trace in feasible(τ).
We denote MHB by ≺, which will be used later. We can specify
≺ easily as constraints Φmhb over the O variables: we start with
Φmhb ≡ true and conjunct it with a constraint Oe1 < Oe2 whenever
e1 and e2 are events by the same thread and e1 occurs before e2,
or when e1 is an event of the form fork(t , t ′) and e2 of the form
begin(t ′), etc.

Lock-mutual-exclusion constraints (Φlock) The locking seman-
tics requires that any two code regions protected by the same lock
are mutually exclusive, i.e., they should not interleave. Φlock cap-
tures the ordering constraints over lock and unlock events. For each
lock l , we extract the set Sl of all the corresponding pairs, (ea ,eb),
of lock/unlock events on l , following the program order locking se-
mantics: the unlock is paired with the most recent lock on the same
lock by the same thread. Then we conjunct Φlock ≡ true with the
formula ∧

(ea ,eb),(ec ,ed)∈Sl

(Oeb <Oec ∨Oed <Oea)

Data-validity constraints (Φrw) The data-validity constraints en-
sure that every event in the considered trace is feasible. Note that in
constructing MCM for an input trace τ, the considered trace does

not necessarily contain all the events in τ but may contain a subset
of them, so that all the incomplete traces corresponding to partial
executions of the program are considered as well. For an event to
be feasible, all the events that must-happen-before it should also
be feasible. Moreover, every read event that must-happen-before it
should read the same value as that in the input trace; otherwise the
event might become infeasible due to a different value read by an
event that it depends on. Each read, however, may read a value writ-
ten by any write, as long as all the other constraints are satisfied.

Let ≺e denote the set of events that must-happen-before an event
e. Consider a read event r in ≺e , say read(t , x, v), we let W x be the
set of write(_, x,_) events in τ (here ‘_’ denotes any value), and W x

v
the set of write(_, x, v) events in τ. The data-validity constraint of
e, denoted by Φrw(e), is written as:

Φrw(e) ≡ ∧
r∈≺e

Φvalue(r,value(r))

where Φvalue(r, v) is defined as follows:

Φvalue(r, v) ≡∨
w∈W x

v

(Φrw(w) ∧Ow <Or
∧

w 6=w ′∈W x
(Ow ′<Ow ∨Or <Ow ′)))

The constraint Φrw(e) requires that every read that must-
happen-before e should read the same value as that in the in-
put trace. The constraint Φvalue(r, v) enforces the read event
r = read(t , x, v) to read the value v on x (written by any write event
w = write(_, x, v) in W r

v), subject to the condition that the order of
w is smaller than that of r and there is no interfering write(_, x,_)
in between. In addition, w itself must be feasible, which is ensured
by Φrw(w).

Since MCM models all the incomplete traces as well, the data-
validity constraint Φrw is thus satisfiable if any event in the input
trace τ is feasible, written as a disjunction of the feasibility con-
straints of all events in τ:

Φrw ≡ ∨
e∈τ
Φrw(e)

It is worth noting that the formula Φ constructed in this section
encodes all the feasible interleavings, i.e., feasible(τ), that can be
inferred from the input trace τ. Each solution of the order variables
to Φ corresponds to an interleaving in feasible(τ). The size of
Φ is cubic in number of reads and writes in τ, and the size of
feasible(τ) may be huge as the number of unique solutions to Φ
can be exponential. In practice, however, we do not need to directly
solve Φ to produce all the interleavings in feasible(τ). For example,
when used for checking properties, it often suffices to find one
interleaving that satisfies the property. We next show how to check
assertion violation and data race properties using Φ.

3.3 Property Checking with Maximal Causal Model
Instead of checking properties for one interleaving at a time, which
is performed at runtime by existing stateless model checkers,
MCR enables checking properties against a maximal causal set
of interleavings offline. Given a property φ defined over the order
variables and the values of reads, we use a constraint solver to solve
φ∧Φ. If the solver finds a solution, it means that there exists an
interleaving satisfying the property and the corresponding inter-
leaving will be reported, which can be extracted from the solution
by ordering the events according to the value of the order variables.
At a low level, the solving of φ∧Φ can be significantly simplified
by tailoring Φ to only the relevant events considered in φ.

Checking assertion violations Consider an assertion violation
property φassert(R), which is defined over the program states con-
cerning the values of a set of read events R. Firstly, since the prop-
erty is only affected by the events in R, we can reduce the data
validity constraint Φrw to consider only those in R, that is, Φrw(e)

for all e ∈ R. Secondly, for any read in R, it may read the value writ-
ten by any write on the same variable, subject to the condition that
the corresponding interleaving is feasible. Let ν(r) denote the value
that can be returned by a read event r = read(t , x,_), and V x the set
of values written by W x , the set of writes to x. Recall Φvalue(r, v)
denotes the constraint for r to read a value v . ν(r) is written as:

ν(r) ≡ ∨
v∈V x

v ∧Φvalue(r, v)

With the above reduction, Φ∧φassert(R) is simplified to:

Φsync ∧ (
∧

e∈R
Φrw(e) ∧ ν(e)) ∧φassert(R)

As an example, suppose the property to check is value(e) =
NULL for a read event e (such as checking null pointer derefer-
ences), the formula solved by the constraint solver is:

Φsync ∧Φrw(e) ∧ (value(e) =NULL)

Checking data races Data races are a particularly problematic
type of errors that have caused some of the worst concurrency
problems in multithreaded systems today. A data race occurs when
there are unordered conflicting accesses in the program without
proper synchronization. Consider two read/write events, ea and eb ,
to a shared variable from different threads, and at least one of them
is a write, the data race property φrace(ea ,eb) can be defined easily
over the order variables corresponding to the events ea and eb :

φrace(ea ,eb) ≡ (Oea =Oeb)

Similar to checking assertion violations, checking data races
against MCM only needs to consider the data-validity constraints
of Φrw(ea) and Φrw(eb) for the property φrace(ea ,eb) for each pair
of conflicting accesses by different threads. Therefore, the formula
φrace(ea ,eb)∧Φ is reduced to:

Φsync ∧ (Oea =Oeb) ∧Φrw(ea) ∧Φrw(eb)

3.4 Seed Interleaving Generation
Our algorithm works by pivoting around the value of reads in
the trace. We ensure that each generated seed interleaving has at
least one new event: a read event that reads a new value (i.e.,
a different value from that in other interleavings). All such new
events are considered and their corresponding interleavings are
generated as long as the interleaving is feasible, i.e., satisfying
the MCM formula Φ. In this way, we guarantee that no two seed
interleavings are redundant. In addition, because all possible legal
combinations of read values are considered, we guarantee that
no seed interleaving is missed and the entire state-space will be
covered eventually.

Algorithm 2 GenerateSeedInterleavings(τ, Φ)
1: Input: τ - the input trace;
2: Φ - the maximal causal formula for τ.
3: Return: S - a set of seed interleavings.
4: for r = read(t , x, v) ∈ τ do
5: for w =write(_, x, v ′) ∈ τ∧ v ′ 6= v do
6: Φseed(r, w) ← ConstructSeedConstraint(r ,w ,Φ);
7: s ← SolveSeedConstraint(Φseed(r, w));
8: if s 6= null then
9: add s to S;

Algorithm 2 shows our seed generation algorithm. Given the in-
put trace τ, our algorithm enumerates each read event in τ on the
set of all values by the writes on the same variable. For each value
that is different from what it reads in τ, we construct a formula
Φseed that constrains the read to read the value. Specifically, con-
sider a read r = read(t , x, v) and a write w =write(_, x, v ′) such that

v 6= v ′, and recall Φvalue(r, v) denotes the constraint for r to read a
value v , we construct the following formula:

Φseed(r, w) ≡Φsync ∧Φrw(r) ∧Φrw(w) ∧Φvalue(r, v ′)
For each Φseed(r, w), we invoke a constraint solver. If the solver

returns a solution, the solution represents a new interleaving which
is feasible and in which the read will read that new value. Note that
each read only concerns about the distinct values but not distinct
writes. If there are multiple writes writing the same value, it suffices
to generate only one new interleaving for all of them. This explains
why MCR is insensitive to N in our example in Figure 2.

Termination Our algorithm terminates when no new seed inter-
leaving can be generated. Unlike ICB or DPOR, our algorithm
does not need a search stack because each seed interleaving (i.e.,
the prefix of each new explored interleaving) is already keeping
track of the search progress. To avoid generating duplicated seed
interleavings from different τ, we ensure that the prefix of each
new explored interleaving is always preserved. Figure 4 shows an
intuitive view of this process. Each table illustrates the read-write
mappings corresponding to a seed interleaving. A table grows as
new reads and writes are discovered but never shrinks.

An important property of our algorithm is that it will cover the
entire state-space with the following theorem:

THEOREM 1. Suppose the program is terminating, our approach
presented in this section will eventually cover the whole state-space
of the program that can be driven by all the possible interleavings
with respect to a given input.

Proof sketch: By contradiction. Suppose there exists an interleaving
s not covered, then it must be the case that s contains a new
event. There could be two possibilities only: (1) the new event
is a previously observed event, but reads a new value; (2) it is
a previously unseen event. Case (1) is impossible, because our
algorithm generates a new seed interleaving for every such read.
For (2), it must be the case that the event depends on a branch, the
condition of which cannot be satisfied by any of the states driven
by our generated seed interleavings. However, this also means that
the branch condition depends on at least one previous read event
reading a new value, contradicting to the fact that our algorithm
generates a seed interleaving for each read with a different value.

Algorithm 3 Parallel-MaxCausalExplore(s)
1: Input: s - a seed interleaving, initially empty.
2: τ← Execute(s);
3: Φ← ConstructMaxCausalModel(τ);
4: async PropertyCheck(Φ);
5: parfor r = read(t , x, v) ∈ τ do
6: parfor w =write(_, x, v ′) ∈ τ∧ v ′ 6= v do
7: Φseed(r, w) ← ConstructSeedConstraint(r ,w ,Φ);
8: s′ ← SolveSeedConstraint(Φseed(r, w));
9: if s′ 6= null then

10: Parallel-MaxCausalExplore(s′);

3.5 Parallel Maximal Causality Reduction
Unlike ICB and DPOR which are completely online and are hard
to parallelize, MCR opens the door for massive parallelism. By
separating offline interleaving generation from online exploration,
parallelizing MCR is mostly straightforward, as the only depen-
dence between different iterations is the seed interleaving. Inside
each iteration, multiple seed interleavings can be generated in par-
allel. In addition, the online exploration for each seed interleaving
is independent.

Algorithm 3 shows our parallel MCR algorithm. To maximize
the degree of parallelism, the input to the procedure Parallel-
MaxCausalExplore is a single seed interleaving (initially empty).
At any time of our algorithm’s execution, there can be many paral-
lelly executing Parallel-MaxCausalExplore procedures each work-
ing on a different seed interleaving. Inside the procedure, the MCM
formula Φ corresponding to the input trace (produced by executing
the program following the seed interleaving) is first constructed.
Then property checking and seed interleaving generation are per-
formed in parallel based on Φ. At line 4, async means creating a
new concurrently executing task. Lines 5-13 describe the parallel
seed interleaving generation. parfor means executing the for
loop in parallel, for each pair (r , w) of a read event r and a match-
ing write event w (which writes a different value). In each parallel
subtask corresponding to (r , w), the seed constraint Φseed(r, w)
is constructed and solved with an SMT solver. If the constraint is
satisfiable, a new seed interleaving will be returned and started by
a new instance of Parallel-MaxCausalExplore.

4. Implementation
To evaluate our algorithms, we have developed a stateless model
checker called ASER using ASM [2] and Z3 [7]. In ASER,
we implemented both the basic MCR algorithm and the paral-
lel algorithm. To compare with the state-of-the-art, we have also
implemented the ICB algorithm in the original CHESS model
checker [23, 25] and its integration with DPOR [10]. In addi-
tion, for these algorithms we have implemented the detection of
two safety violation properties: null pointer dereference (NPE) and
data race.

Three main components ASER consists of a runtime tracer,
an offline constraint analyzer, and a special scheduler. The run-
time tracer captures critical events in the execution including all
shared data accesses and thread synchronizations. Our current im-
plementation dynamically instruments Java programs using byte-
code rewriting. Nevertheless, our algorithm is general to different
languages. The offline constraint analyzer formulates the MCM
constraints from the events and generates seed interleavings by
solving the constraints using Z3. Since all MCM constraints are
simple ordering comparisons over integer variables, we use the In-
teger Difference Logic (IDL) in Z3 to solve them efficiently. The
special scheduler controls the thread execution to follow the seed
interleavings by intercepting the critical events with application-
level conditional variables and semaphores.

ICB/DPOR Our implementation of ICB follows the original al-
gorithm [23]. The only difference is that we preempt not only prior
to thread synchronizations but also before every shared data ac-
cess, because we want to evaluate on programs with data races
as well. For ICB+DPOR, naively combining ICB with the orig-
inal DPOR algorithm [10] is unsound. We follow the bounded
partial order reduction [6] to implement it. Both of these two al-
gorithms are implemented as plugins to the special scheduler as
they are purely dynamic. For ICB, the scheduler checks before ev-
ery critical event the number of thread preemptions in the current
schedule. All schedules with preemption number less or equal to a
pre-defined bound, N , will be explored. ICB starts with zero pre-
emption. After all such interleavings are explored, it increases the
preemption number by one and starts a new iteration. This process
is repeated until reaching N . For ICB+DPOR, we maintain vector
clocks to track happens-before following the optimization in [10].
When a dependence is detected, we create new schedules to explore
by adding backtracking points following [6].

Data race and NPE detectors For ICB and DPOR, we imple-
ment dynamic NPE and data race detection since they both perform

property checking online. For NPE, the scheduler simply tracks
NullPointerException at runtime. For race detection, we
implement the happens-before (HB) based algorithm using vector
clocks. Note that classical happens-before tracks HB edges on syn-
chronization events only and is only precise up to the first race. We
also track HB on shared data reads and writes to ensure all detected
races are real. For MCR, we implement the property checking algo-
rithms for NPE and data race in the constraint analyzer according
to Section 3.3. It is worth noting that neither any NPE nor data race
has to occur in the explored executions before it can be detected by
MCR. The offline property checking on the MCM formula enables
precisely predicting these property violations in all the maximal
causal set of interleavings. Moreover, once the seed interleaving
corresponding to a property violation is generated, it will drive the
program to deterministically expose the violation.

5. Evaluation
We have compared MCR with ICB and DPOR on a variety of pop-
ular multithreaded benchmarks (shown in Figure 1) collected from
recent concurrency studies [9, 16] including two real-world large
applications. In this section, we focus on answering three ques-
tions: 1. How efficient and effective is MCR in finding concur-
rency errors? 2. How efficient and effective is MCR in exploring
state-spaces? 3. How scalable is MCR for real programs?

Evaluation Methodology For the first two questions, we use the
same set of benchmarks. Each benchmark has at least one known
concurrency error that only manifests rarely at runtime as asser-
tion violations, exceptions, etc. We compare the time and the num-
ber of executions for each technique to find the known error. To
evaluate MCR for exploring state-spaces, we further run the fixed
version of these benchmarks (by either fixing the bug or disabling
the runtime exception). In addition, during exploration we perform
data race and NPE detection to evaluate the effectiveness of each
technique for exposing these two types of bugs.

We use Jigsaw and Weblech to evaluate the scalability
of MCR. Jigsaw is a web server application from W3C and
Weblech is a website download tool. Both programs have a test
driver that starts the server, performs client requests, and termi-
nates. The executions of these two programs have many more
events than the other benchmarks. For example, the number of
events in Jigsaw is more than 36K executed by 12 threads. No
prior study of stateless model checking has evaluated on such a
large scale. We run Jigsaw and Weblech with each technique
and set a time bound of an hour. Although no technique can fin-
ish in an hour, we compare the number of detected data races and
NPEs to show the improvement of MCR over existing techniques.
We also run our parallel algorithm in these experiments to assess
the scalability of MCR with parallelization.

All experiments were conducted on an 8-processor 32-core
3.6GHz Intel i7 Linux with 8GB memory and JDK 1.7 8GB heap
space. All data were averaged over three runs.

5.1 Benchmark Bug Finding Results
Table 2 summarizes the results for finding the known errors in the
benchmarks. Overall, MCR takes significantly fewer executions
than ICB and ICB+DPOR. In most cases, the number of runs taken
by MCR is orders of magnitude smaller than ICB and ICB+DPOR.
For example, for BubbleSort, ICB took 592 executions to trig-
ger the runtime assertion violations, and ICB+DPOR took 400 ex-
ecutions, whereas MCR only took 4 executions. In particular, for
MTList and MTSet (two multithreaded tests for Java synchro-
nized LinkedList and HashSet), because both of them contain
many more threads and events than the other benchmarks, ICB ran
out of memory and ICB+DPOR took more than 5000 executions

Table 1: Benchmarks. Each benchmarks has at least one known error that causes runtime exceptions under certain interleavings.

Program LoC #Thrd #Evt Description
Example 79 3 32 The example program shown in Figure 2 with N=1.
Account 373 5 51 Concurrent account deposits and withdrawals suffering from atomicity violations.
Airline 136 6 67 A race condition causes the tickets sold more than the capacity.
Allocation 348 3 125 An atomicity violation causes the same block allocated or freed twice.
BubbleSort 175 5 133 Bubble sorting an array without proper synchronization causing incorrect sort results.
MTList 5979 27 685 Buggy synchronized LinkedList library test throwing ConcurrentModificationException.
MTSet 7086 22 724 Buggy synchronized HashSet library test throwing ConcurrentModificationException.
PingPong 388 6 44 The player is set to null by one thread and dereferenced by another throwing NPE.
Pool107 10K 3 170 Concurrency bug in Apache Commons Pool causing more instances than allowed in the pool.
StringBuf 1339 3 70 An atomicity violation in Java StringBuffer causing StringIndexOutOfBoundsException.
Weblech 35K 3 2045 A tool for downloading websites and emulating standard web-browser behavior.
Jigsaw 380K 12 36K A web server application from W3C providing full HTTP 1.1 functionality.

Table 2: Results on finding known errors in benchmarks.

Program #Executions/Total time
ICB ICB+DPOR MCR

Example 77322/20s 3782/3s 46/2s
Account 111/0.2s 20/0.2s 2/0.3s
Airline 669/1.8s 19/0.8s 9/3s
Allocation 15/0.1s 8/0.3s 2/0.3s
BubbleSort 592/1.2s 400/2.7s 4/4.8s
MTList OOM/- 5173/290s 8/97s
MTSet OOM/- 5480/267s 21/159s
PingPong 648/3s 37/0.5s 2/0.7s
Pool 24/0.3s 6/0.3s 3/0.4s
StringBuf 12/0.1s 10/0.5s 2/0.4s

to find the error. Nevertheless, MCR took only 8 and 21 runs, re-
spectively, because it eliminated a large space of redundant inter-
leavings.

Comparing the overall performance (including both the online
exploration and offline analysis time), MCR took even less time
than ICB and DPOR in almost half of the benchmarks, though
MCR requires building and solving constraints which takes extra
time. For instance, MCR took one third of the time taken by
ICB+DPOR (97s vs 290s) for MTList and nearly half (159s
vs 267s) for MTSet. The reason is that in these benchmarks the
gain by reducing redundant interleavings outweighs the cost of
constraint analysis. Moreover, the performance of MCR can be
improved significantly through parallelism. We report the results
of our parallel algorithm for the two real programs in Section 5.3.

5.2 Benchmark State Space Exploration Results
Table 3 summarizes the state-space exploration results for the
benchmarks. For each benchmark, a technique may either finish
the execution normally, meaning that the state-space has been com-
pletely explored (4) in an hour, or terminate early by running out
of memory (8), or timeout (A). Columns 2-4 report the execu-
tion outcome of each technique. Columns 5-7 report the number
of explored executions and the total time. Columns 8-10 report the
number of data races and NPEs detected during the exploration.

Overall, MCR is much more effective and efficient than ICB
and ICB+DPOR in exploring state-space and finding bugs. For
most benchmarks, ICB did not finish in an hour, because ICB has to
explore all the possible interleavings, the size of which is huge even
for small programs. For half of the benchmarks, ICB+DPOR was
able to finish. For the others, however, it either ran out of memory or
did not finish. Comparatively, MCR finished exploration for most
benchmarks except BubbleSort and MTList/MTSet. We next
discuss the results on several interesting benchmarks.

Table 4: Results on real applications. * means OOM.
Program ICB ICB+DPOR MCR MCR-P

Jigsaw
#Race 2 7 20 38
#NPE 1 2 6 10
#Run 307* 425* 32 769

Weblech
#Race 4 4 6 7
#NPE 0 0 1 1
#Run 1229* 1072* 185 3311

Airline MCR took 8 executions and 4.5s to explore the entire
state-space, while ICB explored 325,891 executions in an hour
and did not finish, and ICB+DPOR explored 3000 executions.
Notice that the online execution of this benchmark is much faster
than offline constraint analysis, so ICB+DPOR took less time than
MCR even it explored many more executions. The number of
executions explored by MCR is even smaller than that reported in
Table 2 in finding the error. The reason is that the bug (an atomicity
violation) is fixed by adding synchronizations, which reduces the
number of possible interleavings.

BubbleSort This benchmark has more than 10 million interleav-
ings. None of the techniques was able to finish within an hour.
ICB ran out of memory, ICB+DPOR explored 326,647 executions,
and MCR explored 13,981. Although MCR explored fewer online
executions than ICB+DPOR, the interleavings in these executions
are much more valuable, as they are all maximal causally distinct to
each other. This is further validated by the fact that MCR detected
more data races than ICB+DPOR (7 vs 6) in these executions.

MTList/MTSet The state-spaces of these two benchmarks are
much larger than the others. Both ICB and ICB+DPOR ran out of
memory and MCR explored 382 and 457 executions respectively in
an hour. However, MCR detected many more data races and NPEs
than the other two techniques. In MTList, MCR detected 8 data
races and one NPE, while both ICB and ICB+DPOR detected
only one data race and none NPE. In MTSet, MCR detected 6
data races and 4 NPE, while both ICB and ICB+DPOR detected 5
data races and none NPE. Moreover, MCR found a new exception
(NoSuchElementException) in both benchmarks.

PingPong This benchmark has a known NPE error. All tech-
niques found the NPE and both MCR and ICB+DPOR detected
6 data races (one more than ICB). However, neither ICB nor
ICB+DPOR was able to finish exploration in an hour, though they
explored 343,728 and 972,799 executions respectively. Compar-
atively, MCR finished exploration in only 13s with 411 online
executions. The advantage of MCR over ICB and DPOR exposed
in this benchmark is not the number of bugs found, but the verifi-
cation confidence that MCR has explored the entire state-space of
this benchmark (corresponding to the given input), and there is no
more data race or NPE other than those 7 data races and 1 NPE.

Table 3: Results on state-space exploration of benchmarks. MCR found new exceptions (tagged with *) in MTList/MTSet.

Program Finished(4), Timeout(A), OOM(8) #Executions/Total time #Race|#NPE
ICB ICB+DPOR MCR ICB ICB+DPOR MCR ICB I+D MCR

Example A 4 4 3294109/1h 25522/10s 50/2s 7|0 10|0 10|0
Account A 4 4 1499507/1h 875/2s 3/0.5s 3|0 3|0 3|0
Airline A 4 4 325891/1h 3000/3.5s 8/4.5s 0|0 0|0 0|0
Allocation 8 A 4 – 1354979/1h 30/5.6s 0|0 0|0 0|0
BubbleSort 8 A A – 326647/1h 13981/1h 4|0 6|0 7|0
MTList 8 8 A – – 382/1h 1|0 1|0 8|2*
MTSet 8 8 A – – 457/1h 5|0 5|0 6|5*
PingPong A A 4 342728/1h 972799/1h 411/13s 6|1 7|1 7|1
Pool A 4 4 509852/1h 1547/1.9s 3/0.9s 0|0 0|0 0|0
StringBuf A 4 4 1340718/1h 427/0.8s 3/0.4s 0|0 0|0 0|0

5.3 Real Application Exploration Results
Table 4 reports our results on Jigsaw and Weblech. The rows
#Race, #NPE, and #Run report the number of data races, NPEs, and
executions detected and explored by each technique. MCR-P cor-
responds to our parallel algorithm. As expected, no technique was
able to finish exploration within an hour. ICB and ICB+DPOR
even ran out of memory on both of these two programs. For
Jigsaw, ICB explored 307 executions, ICB+DPOR 425, and
MCR 32 before they terminated or timed out. For Weblech,
ICB explored 1229 executions, ICB+DPOR 1072, and MCR 185.

Although MCR explored fewer executions than ICB and DPOR
(because the offline analysis takes more time for longer execu-
tions), it detected many more data races and NPEs. For Jigsaw,
MCR detected 20 data races (13 more than ICB+DPOR and 18
more than ICB) and 6 NPEs (4 more than ICB+DPOR and 5 more
than ICB). For Weblech, MCR detected 6 data races and 1 NPE,
while both ICB and ICB+DPOR detected 4 data races and none
NPE. Note that all the reported data races and NPEs are distinct
(on different program locations). Moreover, by parallelizing our al-
gorithm on a 32-core machine, MCR-P was able to explore many
more executions and detect more data races and NPEs within the
same time. For Jigsaw, MCR-P was able to explore 769 execu-
tions and detected 38 data races and 10 NPEs, and for Weblech,
MCR-P explored 3311 executions and detected one more data race
than MCR.

New data races and NPEs found Both Jigsaw and Weblech
have been studied frequently in previous research [16, 29]. In
our experiments, MCR and MCR-P also found two new races
and two new NPEs in Jigsaw and one new race in Weblech.
These races and NPEs were not detected by ICB or DPOR and
have not been reported before. One race in Jigsaw is on field
http.CommonLogger.errlog in class CommonLogger be-
tween two statements in methods errlogmsg and openError
LogFile. The other race is on http.httpd.finishing in
class httpd between methods run and shutdown. Both NPEs
are on field http.httpd.logger, which is dereferenced in
methods log and errlog but set to NULL in method cleanup.
The race in Weblech is on field downloadInProgress in
method run.

5.4 Discussion
Our experimental results clearly demonstrate the superior perfor-
mance of MCR over the state-of-the-art. Although for large pro-
grams it is still hard for MCR to explore the whole state-space
within a reasonable time, MCR serves as a valuable augmentation
to existing predictive techniques for practical bug finding and test-
ing of concurrent programs. To scale to even larger real-world pro-
grams, we have also identified a few challenges that we plan to
address in future.

Scalable constraint solving As noted in Section 3.2, the size of
MCM constraints is cubic in the number of shared data accesses.
For long executions, the corresponding constraints can be very
large. Even with a high performance Z3 solver and an efficient IDL
decision procedure, the constraints may still be hard to solve in
a reasonable time. In fact, the majority of execution time in our
experiments with MCR on Jigsaw and Weblech is spent within
the solver. One direction to improve the scalability of MCR is to
develop a customized solver tailored to the MCM constraints.

Non-terminating programs and fairness Most realistic pro-
grams are non-terminating if thread-fairness is not considered.
For instance, a thread may spin forever on a loop condition
while(!flag); if the scheduler continuously runs the thread
without giving a chance for other threads to execute. Because ev-
ery iteration of the loop produces a new read event, MCR will
generate new seed interleavings for it, hence the exploration pro-
cess will never terminate. However, for the purpose of effective bug
finding, we should deprioritize exploring the seed interleavings for
repetitive read events. Prior work [24] has explored fairness in
stateless model checking. We plan to integrate the technique to
make MCR thread-fairness aware.

Input space and non-determinism Real programs have both
large scheduling and input spaces. MCR only reduces redundant
interleavings wrt the fixed input. It is a known challenge to explore
for all inputs, which will enable the full verification. In addition,
stateless model checking generally assumes the input is determin-
istic across runs. If the input is non-determinisic, the special sched-
uler may fail to enforce the seed interleavings. To address this prob-
lem, we can leverage existing work on record and replay [14, 27]
to capture all non-deterministic input sources. We plan to further
investigate efficient solutions for ensuring input-determinism and
identifying redundant interleavings across different inputs.

6. Related Work
Stateless model checking has been an active research area since the
pioneering work of VeriSoft [13]. Since then a large effort has been
invested in reduction techniques to combat the explosion of inter-
leaving space. Partial order reduction (POR) [5, 10] and context
bounding [23, 25] are the two most effective approaches known so
far and algorithms combining them are also proposed [6, 22, 31].
Various techniques based on persistent set [5], sleep set [10], and
source set [3] have been proposed to optimize the performance
and effectiveness of POR. Fundamentally, the reduction effective-
ness of POR is limited by happens-before relation: it cannot re-
duce redundant interleavings that have different happens-before re-
lation. Differently, MCR overcomes happens-before by exploring
the maximal causality between schedules to achieve the maximal
reduction.

The maximal causal model (MCM) was first presented as a theo-
retical result in [30]. In our prior work RVPredict [16], we extended
MCM with control flow and encoded it with SMT constraints for
race detection. This work is built upon RVPredict with two key im-
provements. First, we extend RVPredict to perform model check-
ing with maximal causality reduction. A crucial step is the gener-
ation of seed interleavings to explore the full state space, which is
not addressed by prior work. In addition, we realize the full MCM
with our data-validity constraint in Sec 3.2, while RVPredict does
not but is specialized for predicting races.

Another related approach is monotonic partial order reduction
(MPOR) [18]. MPOR also formulates concurrent program execu-
tions as constraints and solve them with SMT solvers. Differently,
MPOR does not achieve maximal reduction and cannot be used for
stateless model checking as it does not generate seed interleavings.
The constraint-based approach has also been used to find concur-
rency bugs [28, 32] and to reproduce concurrency failures [15].

A direct application of stateless model checking is systematic
concurrency testing. Unlike conventional testing techniques that
may end up repeatedly executing the same interleaving, stateless
model checking systematically explores all legal but distinct inter-
leavings. To improve the scalability of testing realistic concurrent
programs, various approaches such as coverage-driven [33, 34],
priority-based [4, 17, 26], fairness-based [24], and assertion-guided
techniques [19] have been proposed and shown effective in practice
finding concurrency bugs. Nevertheless, these techniques only try
to select or prioritize schedules but do not reduce redundant inter-
leavings. Moreover, they do not provide any guarantee of state con-
verage and may miss bugs. MCR is orthogonal to these techniques
and can be combined with them to improve scalability.

7. Conclusion
We have presented maximal causality reduction (MCR), which
minimizes the number of explored executions for stateless model
checking concurrent programs based on the foundation of maximal
causal model. We have designed and implemented MCR using a
constraint-based approach and shown that it significantly improves
the efficiency and effectiveness of existing techniques for state-
space exploration and bug finding on both benchmarks and real
programs. Moreover, MCR shifts the runtime exploration cost to
embarrassingly parallel offline analysis, a promising approach to
scale model checking to large concurrent programs.

Acknowledgment
Part of this work was done while the author was at University of Illi-
nois at Urbana-Champaign and supported by the DARPA HACMS
program as SRI subcontract 19-000222. The author wishes to thank
Grigore Rosu for his valuable advice and Qingzhou Luo for many
useful discussions on early idea of this work, and anonymous PLDI
reviewers for helpful suggestions that have improved this paper.
Special thanks go to Lawrence Rauchwerger, Jaakko Järvi, and
Dilma Da Silva at Texas A&M University for their review of the
manuscript and insightful comments.

References
[1] A. Mazurkiewicz. Trace theory. Advances in Petri Nets, 1987.
[2] ASM bytecode analysis framework. http://asm.ow2.org/.
[3] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic

partial order reduction. In POPL, 2014.
[4] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A

randomized scheduler with probabilistic guarantees of finding bugs.
In ASPLOS, 2010.

[5] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space
reduction using partial order techniques. STTT, 1998.

[6] K. E. Coons, M. Musuvathi, and K. S. McKinley. Bounded partial-
order reduction. In OOPSLA, 2013.

[7] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS,
2008.

[8] B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report,
2006.

[9] A. Farzan, P. Madhusudan, N. Razavi, and F. Sorrentino. Predicting
null-pointer dereferences in concurrent programs. In FSE, 2012.

[10] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, 2005.

[11] P. Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems: An Approach to the State-Explosion Problem. PhD
thesis, University of LiÃĺge., 1996. ISBN 3540607617.

[12] P. Godefroid. Model checking for programming languages using
verisoft. In POPL, 1997.

[13] P. Godefroid. Software model checking: The verisoft approach. Form.
Methods Syst. Des., 2005.

[14] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight deterministic
multi-processor replay of concurrent Java programs. In FSE, 2010.

[15] J. Huang, C. Zhang, and J. Dolby. Clap: Recording local executions
to reproduce concurrency failures. In PLDI, 2013.

[16] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound predictive
race detection with control flow abstraction. In PLDI, 2014.

[17] V. Jagannath, Q. Luo, and D. Marinov. Change-aware preemption
prioritization. In ISSTA, 2011.

[18] V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order reduction:
An optimal symbolic partial order reduction technique. In CAV, 2009.

[19] M. Kusano and C. Wang. Assertion guided abstraction: a cooperative
optimization for dynamic partial order reduction. In ASE, 2014.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, 1978.

[21] S. Lu, W. Jiang, and Y. Zhou. A study of interleaving coverage criteria.
In ESEC-FSE, 2007.

[22] M. Musuvathi and S. Qadeer. Partial-order reduction for context-
bounded state exploration. In Tech. Rep. MSR-TR-2007-12, 2007.

[23] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI, 2007.

[24] M. Musuvathi and S. Qadeer. Fair stateless model checking. In PLDI,
2008.

[25] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent
programs. In OSDI, 2008.

[26] S. Nagarakatte, S. Burckhardt, M. M. Martin, and M. Musuvathi.
Multicore acceleration of priority-based schedulers for concurrency
bug detection. In PLDI, 2012.

[27] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. Pinplay:
a framework for deterministic replay and reproducible analysis of
parallel programs. In CGO, 2010.

[28] M. Said, C. Wang, Z. Yang, and K. Sakallah. Generating data race
witnesses by an SMT-based analysis. In NFM, 2011.

[29] K. Sen. Race directed random testing of concurrent programs. In
PLDI, 2008.

[30] T. F. Serbanuta, F. Chen, and G. Rosu. Maximal causal models for
sequentially consistent systems. In RV, 2012.

[31] J. van den Hooff. Fast bug finding in lock-free data structures with
cb-dpor. In Master thesis, Massachusetts Institute of Technology,
2014.

[32] C. Wang, R. Limaye, M. K. Ganai, and A. Gupta. Trace-based
symbolic analysis for atomicity violations. In TACAS, 2010.

[33] C. Wang, M. Said, and A. Gupta. Coverage guided systematic
concurrency testing. In ICSE, 2011.

[34] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: A
coverage-driven testing tool for multithreaded programs. In OOPSLA,
2012.

