Better code generation

Goal is to produce more efficient code for expressions

We consider

- directed acyclic graphs (DAG)
- “optimal” register allocation for trees
 Sethi-Ullman
- “more optimal” register allocation for trees
 Proebsting-Fischer
Common subexpressions

Consider the tree for the expression

\[a + a \times (b - c) + (b - c) \times d \]

Both \(a \) and \(b - c \) are common subexpressions (cse)

- compute the same value
- should compute the value once

A simple and general form of code improvement
Directed acyclic graphs

The directed acyclic graph is a useful representation for such expressions

\[a + a \ast (b - c) + (b - c) \ast d \]

The dag clearly exposes the cases

Aho, Sethi, and Ullman, §5.2, §9.8, …
Directed acyclic graphs

A directed acyclic graph is a tree with sharing

- a tree is a directed acyclic graph where each node has at most one parent
- a dag allows multiple parents for each node
- both a tree and a dag have a distinguished root
- no cycles in the graph!

To find common subexpressions \((within \ a \ statement)\)

- build the dag
- generate code from the dag

This should lead to faster evaluation
Directed acyclic graphs

How do we build a *dag* for an expression?

- use construction primitives for building tree
- teach primitives to catch *cse’s*
 - *mkleaf()* and *mknodel()*
 - hash on *<op,l,r>*
- unique name for each node — its *value number*

Anywhere that we build a tree, we could build a *dag*

- initialize hash table on each expression
- catch only *cses* within expression
Directed acyclic graphs

What about assignment?

- complicates cse detection
- each value has a unique node
- add subscripts to variables

While building the dag, an assignment

- creates new node for lhs — a new \(x_i \)
- kills all nodes built from \(x_{i-1} \)

Example

\[
a_1 \leftarrow a_0 + b
\]

Can we go beyond a single statement?
Directed acyclic graphs

Use a single dag for an entire basic block

A dag for a basic block has labeled nodes

1. leaves are labeled with unique identifier
 — either variable names or constants
 — lvalues or rvalues (obvious by context)
 — leaves represent values on entry, x_0

2. interior nodes are labeled with operators

3. nodes have optional identifier labels
 — interior nodes represent computed values
 — identifier label represents assignment
Directed acyclic graphs

Example

<table>
<thead>
<tr>
<th>Code</th>
<th>After Renaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \leftarrow b + c)</td>
<td>(a_0 \leftarrow b_0 + c_0)</td>
</tr>
<tr>
<td>(b \leftarrow a - d)</td>
<td>(b_1 \leftarrow a_0 - d_0)</td>
</tr>
<tr>
<td>(c \leftarrow b + c)</td>
<td>(c_1 \leftarrow b_1 + c_0)</td>
</tr>
<tr>
<td>(d \leftarrow a - d)</td>
<td>(d_1 \leftarrow a_0 - d_0)</td>
</tr>
</tbody>
</table>
Directed acyclic graphs

Building a dag

\[\text{node}(< \text{id} >) \rightarrow \text{current dag for } < \text{id} > \]

1. set node(\(y\)) to undefined, for each symbol \(y\)

2. for each statement \(x \leftarrow y \text{ op } z\), repeat steps 3, 4, and 5

3. if node(\(y\)) is undefined,

 create a leaf for \(y\)

 set node(\(y\)) to the new node

 do the same for \(z\)

4. if \(< \text{op, node}(y), \text{node}(z) >\) doesn’t exist,

 create it and let \(n\) point to that node

5. delete \(x\) from the list of labels for node(\(x\))

 append \(x\) to the list of labels for \(n\)

 set node(\(x\)) to \(n\)

Aho, Sethi, and Ullman, Algorithm 9.2, in §9.8
Directed acyclic graphs

Reality

Do compilers really use this stuff?

The dag construction algorithm is fast enough

A compilers that uses quads will (*often*)

- build a *dag* to find *ceses*
- convert back to quads for later passes

Are there many *ceses?* _Yes!_

- they arise in addressing
- array subscript code
- field access in records
- expressions based on loop indices
- access to parameters
Optimal code

A comment on the word “optimal”

- Aho, Sethi, and Ullman use optimal a lot
- particularly in regard to code generation
- look closely at the underlying assumptions
- look for simplifications, like “no sharing”

There can’t be that many

- optimal code sequences, or
- ways of generating them
Machine model

For code generation, Aho, Sethi, and Ullman propose a simple machine model.

- byte-addressable machine with four byte words
- n general purpose registers
- two-address instructions — op src, $dest$

<table>
<thead>
<tr>
<th>Mode</th>
<th>Form</th>
<th>Address</th>
<th>Added cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute</td>
<td>M</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>register</td>
<td>R</td>
<td>R</td>
<td>0</td>
</tr>
<tr>
<td>indexed</td>
<td>off(R)</td>
<td>off + c(R)</td>
<td>1</td>
</tr>
<tr>
<td>ind. register</td>
<td>*R</td>
<td>c(R)</td>
<td>0</td>
</tr>
<tr>
<td>ind. indexed</td>
<td>*off(R)</td>
<td>c(off + c(R))</td>
<td>1</td>
</tr>
</tbody>
</table>

Aho, Sethi, and Ullman, §9.2
Code generation for trees

Overview of Sethi-Ullman schemes

Phase 1

- compute number of registers required to evaluate a subtree without storing values to memory
- label each interior node with that number

Phase 2

- walk the tree and generate code
- evaluation order guided by labels
Phase 1

if n is a leaf then
 if n is the leftmost child then
 label(n) ← 1
 else label(n) ← 0
else begin /* n is an interior node */
 let \(n_1, n_2, \ldots, n_k \) be the children of n, ordered so that
 \[
 \text{label}(n_1) \geq \text{label}(n_2) \geq \cdots \geq \text{label}(n_k)
 \]
 label(n) ← max\(_{1 \leq i \leq k} \) (\text{label}(n_i) + i - 1)

Can compute labels in postorder

\text{label} is defined recursively as:

\[
\text{label}(n) = \begin{cases}
\max(l_1, l_2) & \text{if } l_1 \neq l_2 \\
 l_1 + 1 & \text{if } l_1 = l_2
\end{cases}
\]

Aho, Sethi, and Ullman, §9.10
Phase 2

Assumptions

- input tree is labeled by Phase 1
- `rstack` is a stack of registers
 - initialize to `r0, r1, ..., rk`
- `swap(rstack)` interchanges top two registers
 - ensures left child and parent in same register
- `tstack` is a stack of temporary locations
Phase 2

Code for phase 2

procedure gencode(n)
 /* case 0 — just load it */
 if n is leaf “name” and leftmost child
 gen(mov, name, top(rstack))
 else if n is interior node “op n1 n2” then
 /* case 1 — n1 in reg, n2 in RAM */
 if label(n2) = 0 then
 gencode(n1)
 gen(op, name of n2, top(rstack))
 /* case 2 — n1 needs no stores */
 /* but n2 needs more registers */
 else if 1 ≤ label(n1) ≤ label(n2)
 and label(n1) < r then
 swap(rstack)
 gencode(n2)
 R ← pop(rstack)
 gencode(n1)
 gen(op, R, top(rstack))
 push(rstack, R)
 swap(rstack)

Aho, Sethi, & Ullman, §9.10
Phase 2

/* case 3 — symmetric to case 2 */
else if \(1 \leq \text{label}(n_2) \leq \text{label}(n_1) \) and
\(\text{label}(n_2) < r \) then
\text{gen}(n_1)
R = \text{pop(rstack)}
\text{gen}(n_2)
\text{gen(op, top(rstack), R)}
\text{push(rstack, R)}

/* case 4 — need a temporary */
else
\text{gen}(n_2)
T \leftarrow \text{pop(tstack)}
\text{gen(MOV, top(rstack), T)}
\text{gen}(n_1)
\text{push(tstack, T)}
\text{gen(op, T, top(rstack))}

Aho, Sethi, & Ullman, §9.10
Example

\[
\begin{array}{c}
- t_4 \\
2 \\
+ t_1 \\
1 \\
\text{a} \\
1 \\
\text{b} \\
0 \\
- t_3 \\
2 \\
\text{e} \\
1 \\
+ t_2 \\
1 \\
\text{c} \\
1 \\
\text{d} \\
0 \\
\end{array}
\]

\[
gencode(t_4) & \quad \text{case 2} \\
gencode(t_3) & \quad \text{case 3} \\
gencode(e) & \quad \text{case 0} \\
mov e, r1 \\
gencode(t_2) & \quad \text{case 1} \\
gencode(c) & \quad \text{case 0} \\
mov c, r0 \\
add d, r0 \\
sub r0, r1 \\
gencode(t_1) & \quad \text{case 1} \\
gencode(a) & \quad \text{case 0} \\
mov a, r0 \\
add b, r0 \\
sub r1, r0
\]
Extensions to the labeling scheme

Multiple register operations

- increase base case to reserve registers
- paired registers may require triples

Algebraic properties

- commutativity, associativity to lower labels
- deep, narrow, left-biased trees

Common subexpressions

- increases complexity of code generation (NP-Complete)
- partition into subtrees that have $ceses$ as roots
- order trees and apply Sethi-Ullman