LR parsing

There are three commonly used algorithms to build tables for an “LR” parser:

1. $SLR(1) = LR(0) + \text{FOLLOW}$
 - smallest class of grammars
 - smallest tables (number of states)
 - simple, fast construction

2. $LR(1)$
 - full set of $LR(1)$ grammars
 - largest tables (number of states)
 - slow, large construction

3. $LALR(1)$
 - intermediate sized set of grammars
 - same number of states as $SLR(1)$
 - canonical construction is slow and large
 - better construction techniques exist

An $LR(1)$ parser for either ALGOL or PASCAL has several thousand states, while an $SLR(1)$ or $LALR(1)$ parser for the same language may have several hundred states
Viable prefix

A viable prefix is

1. a prefix of a right-sentential form that does not continue past the right end of the rightmost handle of that sentential form†, or

2. a prefix of a right-sentential form that can appear on the stack of a shift-reduce parser.

If the viable prefix is a proper prefix (that is, a handle), it is possible to add terminals onto its end to form a right-sentential form.

As long as the prefix represented by the stack is viable, the parser has not seen a detectable error.

† If the grammar is unambiguous, there is a unique rightmost handle. $LR(k)$ grammars are unambiguous. Operator grammars may be ambiguous, but are still parsed with shift-reduce parsers.
SLR(1) Parsing

Viable prefix of a right-sentential form:

- contains both terminals and nonterminals
- recognized with NFA or DFA

Building a SLR parser

- begin with NFA for recognizing viable prefixes
- construct DFA for recognizing viable prefixes
- augment with FOLLOW to disambiguate reductions

States in the NFA are $LR(0)$ items
States in the DFA are sets of $LR(0)$ items
An \(LR(0) \) item is a string \([\alpha]\), where

\[\alpha \] is a production from \(G \) with a \(\bullet \) at some position in the rhs

The \(\bullet \) indicates how much of an item we have seen at a given state in the parse.

\[A ::= \bullet X Y Z \] indicates that the parser is looking for a string that can be derived from \(X Y Z \)

\[A ::= X Y \bullet Z \] indicates that the parser has seen a string derived from \(X Y \) and is looking for one derivable from \(Z \)

\(LR(0) \) items \((\text{no lookahead}) \)

\(A ::= X Y Z \) generates 4 \(LR(0) \) items.

1. \[A ::= \bullet X Y Z \]
2. \[A ::= X \bullet Y Z \]
3. \[A ::= X Y \bullet Z \]
4. \[A ::= X Y Z \bullet \]
Canonical $LR(0)$ items

The $SLR(1)$ table construction algorithm uses a specific set of sets of $LR(0)$ items.

These sets are called the canonical collection of sets of $LR(0)$ items for a grammar G.

The canonical collection represents the set of valid states for the LR parser.

The items in each set of the canonical collection fall into two classes:

- kernel items: items where \bullet is not at the left end of the rhs and $[S' ::= \bullet S]$
- non-kernel items: all items where \bullet is at the left end of rhs
LR(0) items

Each LR(0) item corresponds to a point in the parse

To generate a parser state from a kernel item, we take its closure

\[[A ::= \alpha \bullet B\beta] \in I_j, \text{ then, in state } j, \text{ the parser might next see a string derivable from } B\beta \]

\[\Rightarrow \text{ to form its closure, add all items of the form } [B ::= \bullet \gamma] \in G \]

† An "augmented grammar” is one where the start symbol appears only on the lhs of productions
For the rest of LR parsing, we will assume the grammar is augmented with a production \(S' ::= S \)
Canonical LR(0) items

The canonical collection of LR(0) items:

- set of items derivable from \([S' ::= \bullet S]\)
- set of all items that can derive the final configuration

Essentially,

- each set in the canonical collection of sets of LR(0) items represents a state in an NFA that recognizes viable prefixes.
- Grouping together is really the subset construction, §3.6

To construct the canonical collection we need two functions:

- \(\text{closure}(I)\)
- \(\text{GOTO}(I, X)\)
Closure(I)

Given an item $[A ::= \alpha \cdot B\beta]$, its closure contains the item and any other items that can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce to $B\beta$ (or γ for some other item $[B ::= \bullet \gamma]$ in the closure).

To compute closure(I)

```
function closure(I)
    repeat
        new_item ← false
        for each item $[A ::= \alpha \cdot B\beta] \in I$,
            each production $B ::= \gamma \in G''$
            if $[B ::= \bullet \gamma] \notin I$ then
                add $[B ::= \bullet \gamma]$ to I
                new_item ← true
            endif
        until (new_item = false)
    return I
```
Goto(\(I, X\))

Let \(I\) be a set of \(LR(0)\) items and \(X\) be a grammar symbol.

Then, \(\text{GOTO}(I, X)\) is the closure of the set of all items

\[[A ::= \alpha X \cdot \beta] \text{ such that } [A ::= \alpha \cdot X \beta] \in I \]

If \(I\) is the set of valid items for some viable prefix \(\gamma\), then \(\text{goto}(I, X)\) is the set of valid items for the viable prefix \(\gamma X\).

\(\text{goto}(I, X)\) represents state after recognizing \(X\) in state \(I\).

To compute \(\text{goto}(I, X)\)

```
function goto(I, X)
    J ← set of items [A ::= \alpha X \cdot \beta]
    such that [A ::= \alpha \cdot X \beta] ∈ I
    J' ← closure(J)
    return J'
```
Collection of sets of $LR(0)$ items

We start the construction of the collection of sets of $LR(0)$ items with the item $[S' ::= \bullet S]$, where

S' is the start symbol of the augmented grammar G''

S is the start symbol of G

To compute the collection of sets of $LR(0)$ items

procedure items(G'')
 $S_0 \leftarrow$ closure($\{[S' ::= \bullet S]\}$)
 Items $\leftarrow \{ S_0 \}$
 ToDo $\leftarrow \{ S_0 \}$
 while ToDo not empty do
 remove S_i from ToDo
 for each grammar symbol X do
 $S_{new} \leftarrow$ goto(S_i, X)
 if S_{new} is a new state then
 Items \leftarrow Items $\cup \{ S_{new} \}$
 ToDo \leftarrow Items $\cup \{ S_{new} \}$
 endif
 endfor
 endwhile
 return Items
LR(0) machines

LR(0) DFA

- states – canonical sets of LR(0) items
- edges – goto transitions
- recognizes all viable prefixes of handles
- no lookahead

To be able to recognize viable prefixes of the language (instead of the handles), we must be able to reduce handles to nonterminals

Reducing a handle (rhs of production) to a nonterminal can be viewed as:

- returning to state at beginning of handle
- making transition on nonterminal

To return to state at beginning of the handle, we must use the stack!
SLR(1) tables

SLR(1) parser

- augment *LR(0)* machine
- add FOLLOW information using one token of lookahead
- encoded as ACTION, GOTO tables

ACTION table

- for each [state, lookahead] pair
- have we reached end of handle?
- if not, shift
- if at end of handle, reduce
- may also accept or error
- use lookahead to guide decision

GOTO table

- for each [state, nonterminal] pair
- pick state to go to after reduction
- look at nonterminal at top of stack
SLR(1) table construction

The Algorithm

1. construct the collection of sets of LR(0) items for G'.

2. State i of the parser is constructed from I_i.

 (a) if $[A ::= \alpha \bullet a\beta] \in I_i$ and goto(I_i, a) = I_j, then set ACTION[i, a] to “shift j”. (a must be a terminal)

 (b) if $[A ::= \alpha\bullet] \in I_i$, then set ACTION[$i, a$] to “reduce $A ::= \alpha$” for all a in FOLLOW(A).

 (c) if $[S' ::= S\bullet] \in I_i$, then set ACTION[$i, \text{eof}$] to “accept”.

3. If goto(I_i, A) = I_j, then set GOTO[i, A] to j.

4. All other entries in ACTION and GOTO are set to “error”

5. The initial state of the parser is the state constructed from the set containing the item $[S' ::= \bullet S]$.
SLR(1) parser example

The Grammar

1 | E ::= T + E
2 | T
3 | T ::= id

The Augmented Grammar

0 | S' ::= E
1 | E ::= T + E
2 | T
3 | T ::= id

Symbol	FIRST	FOLLOW
S' | \{ id \} | \{ eof \}
E | \{ id \} | \{ eof \}
T | \{ id \} | \{ +, eof \}
Example LR(0) states

S_0:
\[S' ::= \bullet E, \]
\[E ::= \bullet T + E, \]
\[E ::= \bullet T, \]
\[T ::= \bullet \text{id} \]

S_1:
\[S' ::= E \bullet \]

S_2:
\[E ::= T \bullet + E, \]
\[E ::= T \bullet \]

S_3:
\[T ::= \text{id} \bullet \]

S_4:
\[E ::= T + \bullet E, \]
\[E ::= \bullet T + E, \]
\[E ::= \bullet T, \]
\[T ::= \bullet \text{id} \]

S_5:
\[E ::= T + E \bullet \]
Example GOTO function

Start

\[S_0 \leftarrow \text{closure} \left(\{ \text{ S ::= \ast E } \} \right) \]

Iteration 1

\[\text{goto}(S_0, E) = S_1 \]
\[\text{goto}(S_0, T) = S_2 \]
\[\text{goto}(S_0, \text{id}) = S_3 \]

Iteration 2

\[\text{goto}(S_2, +) = S_4 \]

Iteration 3

\[\text{goto}(S_4, \text{id}) = S_3 \]
\[\text{goto}(S_4, E) = S_5 \]
\[\text{goto}(S_4, T) = S_2 \]
Example **ACTION** and **GOTO** tables

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>shift 3 — —</td>
</tr>
<tr>
<td>S_1</td>
<td>— — accept</td>
</tr>
<tr>
<td>S_2</td>
<td>— shift 4 reduce 2</td>
</tr>
<tr>
<td>S_3</td>
<td>— reduce 3 reduce 3</td>
</tr>
<tr>
<td>S_4</td>
<td>shift 3 — —</td>
</tr>
<tr>
<td>S_5</td>
<td>— — reduce 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>id + id $</td>
<td>shift 3</td>
</tr>
<tr>
<td>$0 \text{id }3$</td>
<td>+ id $</td>
<td>reduce 3 (T ::= id)</td>
</tr>
<tr>
<td>$0 \text{T }2$</td>
<td>+ id $</td>
<td>shift 4</td>
</tr>
<tr>
<td>$0 \text{T }2 + 4$</td>
<td>id $</td>
<td>shift 3</td>
</tr>
<tr>
<td>$0 \text{T }2 + 4 \text{id }3$</td>
<td>$</td>
<td>reduce 3 (T ::= id)</td>
</tr>
<tr>
<td>$0 \text{T }2 + 4 \text{T }2$</td>
<td>$</td>
<td>reduce 2 (E ::= T)</td>
</tr>
<tr>
<td>$0 \text{T }2 + 4 \text{E }5$</td>
<td>$</td>
<td>reduce 1 (E ::= T + E)</td>
</tr>
<tr>
<td>$0 \text{E }1$</td>
<td>$</td>
<td>accept</td>
</tr>
</tbody>
</table>
What can go wrong?

Rules 2a, 2b, & 2c in the $SLR(1)$ table construction algorithm can multiply define a position in $ACTION$. If this happens, the grammar is not $SLR(1)$.

Two cases arise

$shift/reduce$

This is called a $shift/reduce$ conflict. In general, it indicates an ambiguous construct in the grammar.

- can modify the grammar to eliminate it
- can resolve in favor of shifting

Classic example: dangling else

$reduce/reduce$

This is called a $reduce/reduce$ conflict. Again, it indicates an ambiguous construct in the grammar.

- often, no simple resolution
- parse a nearby language

Classic example: PL/I call and subscript