Regions and Other Concepts

Definition 11. Let G=(N,A,s) be a flow graph, let N₁⊆N, let A₁⊆A, and let h be in N₁. R=(N₁,A₁,h) is called a region of G with header h iff in every path (x₁, ..., xₖ), where x₁=s and xₖ is in N₁, there is some i ≤ k such that

(a) xᵢ = h
(b) xᵢ+1, ..., xₖ are in N₁
(c) (xᵢ,xᵢ₊₁), (xᵢ₊₁,xᵢ₊₂), ..., (xₖ₋₁,xₖ) are in A₁.

That is access to every node in the region is through the header only.

Lemma 12. A region of the flow graph is a subflowgraph.

Lemma 13. The header of a region dominates all nodes in the region.

Definition 12. We say that each node and arc in the original flow graph represents itself.

If T₁ is applied to node w with arc (w,w), then the resulting node represents what node w and arc (w,w) represented.

If T₂ is applied to x and y with arc (x,y) eliminated, then the resulting node z represents what x, y and (x,y) represented. In addition, if two arcs (x,u) and (y,u) are replaced by a single arc (z,u), the (z,u) represents what (x,u) and (y,u) represented.
Example:

Lemma 14. In a flow graph, if region R results from region R’ consuming region R”, then the header h of R’ dominates all nodes in R”.

4 represents \{2, b\} e represents \{c, d\}

6 represents \{1, 2, 3, a, b, c, d\}
Theorem 6. As we reduce a flow graph G by T1 and T2, at all times the following conditions are true:

1. A node represents a region of G.
2. An edge from x to y represents a set of edges. Each such edge is from some node in the region represented by x to the header of the region represented by y.
3. Each node and edge of G is represented by exactly one node or edge of the current graph.

Proof The theorem holds trivially for G itself. Every node is a region by itself, and every edge represents only itself.

Whenever T1 is applied, we add a self arc to a node representing a region. Adding the self arc does not change the fact that the node is a region.

Assume now that T2 is applied to consume node y by node x. Let x and y represent regions X and Y respectively. Also, let A be the set of arcs represented by (x,y). We claim that X, Y and A together form a region whose header is the header of X. All we need is to prove that the header of X dominates every node in Y. But this is true because T2 was applied and therefore all arcs entering Y come from X.
Definition 13. A parse π of a reducible flow graph $G=(N,A,s)$ is a sequence of objects of the form $(T1,u,v,S)$ or $(T2,u,v,w,S)$, where u, v and w are nodes and S is a set of arcs. We define the parse of a reducible flow graph recursively as follows:

1. The trivial flow graph has only the empty sequence as its parse.

2. If G' (which may not be the original flow graph in a sequence of reductions) is reduced to G'' by an application of $T1$ to node u, and the resulting node is named v in G'', then $(T1,u,v,S)$ followed by a parse of G'' is a parse of G', where S is the set of arcs represented by the arc (u,u) eliminated from G'.

3. If G' is reduced to G'' by an application of $T2$ to nodes u and v (with u consuming v), and the resulting node is called w, then $(T2,u,v,w,S)$ followed by a parse of G'' is a parse of G', where S is the set of arcs represented by the arc (u,v) in G'.

4. In both (2) and (3) above, “representation in G' carries over to G''”. That is, whatever an object represents in G' is also represented by that object in G'', except for those changes in representation caused by the particular transformation ($T1$ or $T2$) currently being applied.

Example: The parse of the previous flow graph is:

$$(T1,2,4,\{b\}) \ (T2,1,4,5,\{a\}) \ (T2,5,3,6,\{c,d\})$$
Definition 14. Let $G=(N,A,s)$ be a reducible flow graph and let π be a parse of G. We say that an arc in A is a back arc with respect to π if it appears in set S of an object $(T1,u,v,S)$ of π and a forward arc (not to be confused with the forward arcs of a DFST. This is the forward arc of Definition 7’) with respect to π otherwise. Let $B(G)$ be the set of arcs in A that are back arcs in every parse of G.

Definition 15. A DAG of a flow graph $G=(N,A,s)$ is an acyclic flow graph $D=(N,A',s)$ such that A' is a subset of A and for any arc e in $A-A'$, $(N,A'\cup\{e\},s)$ is not a DAG. That is, D is a maximal acyclic subflowgraph.

Theorem 7. Let $G=(N,A,s)$ be a RFG and let π be a parse of G. Arc (x,y) is a back arc iff y dominates x.

Theorem 8. A flow graph is reducible iff its DAG is unique.

Corollary The DAG of a reducible flowgraph is any DFST of G plus its forward and cross arcs. (Alternatively, the back arcs of a parse of a reducible flow graph are exactly the back arcs of any DFST for G).

Corollary. See Definition 7’.
Node Splitting

How can an irreducible flow graph be transformed to an equivalent reducible flow graph?

First, let us assume that the nodes of a flow graph have (not necessarily distinct) labels. If $P=(x_1, \ldots, x_k)$ is a path in a flow graph, then we define $\text{labels}(P)$ to be the string of labels of these nodes: $(\text{label}(x_1), \ldots, \text{label}(x_k))$.

We say that two flow graphs G_1 and G_2 are equivalent iff, for each path P in G_1, there is a path Q in G_2 such that $\text{labels}(P)=\text{labels}(Q)$ and conversely.

Let $G=(N,A,s)$ be a flow graph. Let x ($x \neq s$) be a node with no self loop, predecessors w_1, \ldots, w_p ($p \geq 2$), and successors y_1, \ldots, y_t ($t \geq 0$). We define $G\text{ split }x$ to be the flow graph resulting from the following procedure:

1. Delete the arcs from the w_is to x and those from x to the y_is.
2. Add p copies of x (x_1, \ldots, x_p) with $\text{label}(x_i) = \text{label}(x)$. Add arcs (w_i,x_i) and arcs from every x_i to all y_js.

Theorem 9. Let S denote the splitting of a node. Any flow graph can be transformed into the trivial flow graph by a transformation represented by the regular expression $T^\circ(ST^\circ)^*$. That is, first apply T°, then apply S followed by T° zero or more times.